PS Funktionalanalysis II

Gerald Teschl

June 22, 2005

1 Übung 1

Problem 1.1 Show $(\alpha A)^{*}=\alpha^{*} A^{*}$ and $(A+B)^{*} \supseteq A^{*}+B^{*}$ with equality if one operator is bounded. Give an example where equality does not hold.

Problem 1.2 Show

$$
\begin{equation*}
\operatorname{Ker}\left(A^{*}\right)=\operatorname{Ran}(A)^{\perp} \tag{1}
\end{equation*}
$$

Problem 1.3 Show that the formula of partial integration

$$
\begin{equation*}
\int_{a}^{b} f(x) g^{\prime}(x)=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime}(x) g(x) d x . \tag{2}
\end{equation*}
$$

holds for $f, g \in A C[a, b]$. (Hint: Fubini)
Problem 1.4 Show that $H^{1}(a, b)$ together with the norm

$$
\begin{equation*}
\|f\|_{1}=\int_{a}^{b}|f(t)|^{2} d t+\int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t \tag{3}
\end{equation*}
$$

is a Hilbert space. What is the closure of $C_{0}^{\infty}(a, b)$ in $H^{1}(a, b)$?
Problem 1.5 Show that $f \in H^{1}(\mathbb{R})$ satisfies $\lim _{x \rightarrow \pm \infty} f(x)=0$. (Hint: Integrate $\frac{d}{d x}|f(x)|^{2}=2 \operatorname{Re}\left(f(x)^{*} f^{\prime}(x)\right)$.)

Problem 1.6 Let $A=-\frac{d^{2}}{d x^{2}}, \mathfrak{D}(A)=\left\{f \in H^{2}(0, \pi) \mid f(0)=f(\pi)=0\right\}$ and let $\psi(x)=\frac{1}{2 \sqrt{\pi}} x(\pi-x)$. Find the error in the following argument: Since A is symmetric we have $1=\langle A \psi, A \psi\rangle=\left\langle\psi, A^{2} \psi\right\rangle=0$.

Problem 1.7 Show that the kernel of a closed operator is closed.
Problem 1.8 Suppose A is a closed operator. Show that $A^{*} A$ (with $\mathfrak{D}\left(A^{*} A\right)=$ $\left\{\psi \in \mathfrak{D}(A) \mid A \psi \in \mathfrak{D}\left(A^{*}\right)\right\}$ is self-adjoint. (Hint: $A^{*} A \geq 0$.)

2 Übung 2

Problem 2.1 What is the spectrum of an orthogonal projection?
Problem 2.2 Compute the resolvent of $A f=f^{\prime}, \mathfrak{D}(A)=\left\{f \in H^{1}[0,1] \mid f(0)=\right.$ $0\}$ and show that unbounded operators can have empty spectrum.

Problem 2.3 Compute the eigenvalues and eigenvectors of $A=-\frac{d^{2}}{d x^{2}}, \mathfrak{D}(A)=$ $\left\{f \in H^{2}(0, \pi) \mid f(0)=f(\pi)=0\right\}$. Compute the resolvent of A.

Problem 2.4 Find a Weyl sequence for the self-adjoint operator $A=-\frac{d^{2}}{d x^{2}}$, $\mathfrak{D}(A)=H^{2}(\mathbb{R})$ for $z \in(0, \infty)$. What is $\sigma(A)$? (Hint: Cut off the solutions of $-u^{\prime \prime}(x)=z u(x)$ outside a finite ball.)

Problem 2.5 Suppose A is bounded. Show that the spectrum of $A A^{*}$ and $A^{*} A$ coincide away from 0 by showing

$$
\begin{equation*}
R_{A A^{*}}(z)=\frac{1}{z}\left(A R_{A^{*} A}(z) A^{*}-1\right), \quad R_{A^{*} A}(z)=\frac{1}{z}\left(A^{*} R_{A A^{*}}(z) A-1\right) . \tag{4}
\end{equation*}
$$

Problem 2.6 Compute the defect indices of $A_{0}=\mathrm{i} \frac{d}{d x}, \mathfrak{D}\left(A_{0}\right)=C_{c}^{\infty}((0, \infty))$. Can you give a self-adjoint extension of A_{0}.

3 Übung 3

Problem 3.1 Show that a self-adjoint operator P is a projection if and only if $\sigma(P) \subseteq\{0,1\}$.

Problem 3.2 Let $\mathfrak{H}=L^{2}(\mathbb{R})$ and let f be a real-valued measurable function. Show that

$$
\begin{equation*}
P(\Omega)=\chi_{f^{-1}(\Omega)} \tag{5}
\end{equation*}
$$

is a projection valued measure. What is the corresponding operator?
Problem 3.3 Let $P(\Omega)$ be a projection-valued measure and

$$
\begin{equation*}
P(\lambda)=P((-\infty, \lambda]) \tag{6}
\end{equation*}
$$

the corresponding resolution of the identity. Show that $P(\lambda)$ satisfies:

1. $P(\lambda)$ is an orthogonal projection.
2. $P\left(\lambda_{1}\right) \leq P\left(\lambda_{2}\right)$ (that is $\left\langle\psi, P\left(\lambda_{1}\right) \psi\right\rangle \leq\left\langle\psi, P\left(\lambda_{2}\right) \psi\right\rangle$) or equivalently $\operatorname{Ran}\left(P\left(\lambda_{1}\right)\right) \subseteq$ $\operatorname{Ran}\left(P\left(\lambda_{2}\right)\right)$ for $\lambda_{1} \leq \lambda_{2}$.
3. s-lim $\lambda_{\lambda_{n} \downarrow \lambda} P\left(\lambda_{n}\right)=P(\lambda)$ (strong right continuity).
4. $\mathrm{s}-\lim _{\lambda \rightarrow-\infty} P(\lambda)=0$ and $\mathrm{s}-\lim _{\lambda \rightarrow+\infty} P(\lambda)=\mathbb{I}$

Problem 3.4 Let A_{1}, A_{2} be self-adjoint operators with simple spectrum and corresponding maximal spectral measures μ_{1} and μ_{2}. Show that they are unitarily equivalent if μ_{1} and μ_{2} are mutually absolutely continuous.

4 Übung 4

Problem 4.1 Construct a multiplication operator on $L^{2}(\mathbb{R})$ which has dense pure point spectrum.

Problem 4.2 Let $d \mu(\lambda)=\chi_{[0,1]}(\lambda) d \lambda$ and $f(\lambda)=\chi_{(-\infty, t]}, t \in \mathbb{R}$. Compute $f_{\star} \mu$.

Problem 4.3 Compute $\sigma(A), \sigma_{a c}(A), \sigma_{s c}(A)$, and $\sigma_{p p}(A)$ for the multiplication operator $A=\frac{1}{1+x^{2}}$ in $L^{2}(\mathbb{R})$. What is its spectral multiplicity?

Problem 4.4 Let $\mathfrak{H}=L^{2}(0,2 \pi)$ and consider the one parameter unitary group given by $U(t) f(x)=f(x-t \bmod 2 \pi)$. What is the generator of U ?

5 Übung 5

Problem 5.1 Compute the resolvent of $A+\alpha\langle\psi,.\rangle \psi$. (Hint: Show

$$
\begin{equation*}
(\mathbb{I}+\alpha\langle\varphi, .\rangle \psi)^{-1}=\mathbb{I}-\frac{\alpha}{1+\alpha\langle\varphi, \psi\rangle}\langle\varphi, .\rangle \psi \tag{7}
\end{equation*}
$$

and use the second resolvent formula.)
Problem 5.2 Show that $K: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N}), f(n) \mapsto \sum_{j \in \mathbb{N}} k(n+j) f(j)$ is Hilbert-Schmidt if $|k(n)| \leq C(n)$, where $C(n)$ is decreasing and summable.

Problem 5.3 Show that $A=-\frac{d^{2}}{d x^{2}}+q(x), \mathfrak{D}(A)=H^{2}(\mathbb{R})$ is self-adjoint if $q \in L^{\infty}(\mathbb{R})$. Show that if $-u^{\prime \prime}(x)+q(x) u(x)=z u(x)$ has a solution for which u and u^{\prime} are bounded near $+\infty$ (or $-\infty$) but u is not square integrable near $+\infty($ or $-\infty)$, then $z \in \sigma_{\text {ess }}(A)$. (Hint: Use u to construct a Weyl sequence by restricting it to a compact set. Now modify your construction to get a singular Weyl sequence by observing that functions with disjoint support are orthogonal.)

6 Übung 6

Problem 6.1 Given $\alpha, \beta, \gamma, \delta$, show that there is a function $f \in \mathfrak{D}(\tau)$ restricted to $[c, d] \subseteq(a, b)$ such that $f(c)=\alpha,(p f)(c)=\beta$ and $f(d)=\gamma,(p f)(c)=\delta$. (Hint: Use the solution formula for the inhomogenous equation in Lemma 9.2.)
Problem 6.2 Let $A_{0}=-\frac{d^{2}}{d x^{2}}, \mathfrak{D}\left(A_{0}\right)=\left\{f \in H^{2}[0,1] \mid f(0)=f(1)=0\right\}$. and $B=q, \mathfrak{D}(B)=\left\{f \in L^{2}(0,1) \mid q f \in L^{2}(0,1)\right\}$. Find a $q \in L^{1}(0,1)$ such that $\mathfrak{D}\left(A_{0}\right) \cap \mathfrak{D}(B)=\{0\} . \quad$ (Hint: Start by constructing a function $f \in L^{p}(0,1)$ which has a pole at every rational number in $[0,1]$.)

Problem 6.3 Compute the spectrum and the resolvent of $\tau=-\frac{d^{2}}{d x^{2}}, I=(0, \infty)$ defined on $\mathfrak{D}(A)=\{f \in \mathfrak{D}(\tau) \mid f(0)=0\}$.

