PS Gewöhnliche Differentialgleichungen 2

Gerald Teschl

WS2008/09

1. Can

$$
\phi(t)=\binom{\cos (2 t)}{\sin (t)}
$$

be the solution of an autonomous system $\dot{x}=f(x)$? (Hint: Plot the orbit.) Can it be the solution of $\dot{x}=f(t, x)$?
2. Compute the flow for $f(x)=x^{2}$ defined on $M=\mathbb{R}$.
3. Show that $\Phi(t, x)=\mathrm{e}^{t}(1+x)-1$ is a flow (i.e., it satisfies $\Phi(0, x)=x$ and $\Phi(s+t, x)=\Phi(t, \Phi(s, x)))$. Can you find an autonomous system corresponding to this flow?
4. Find a transformation which straightens out the flow $\dot{x}=x$ defined on $M=\mathbb{R}$.
5. Let $\phi(t)$ be the solution of a first-order autonomous system. Suppose $\lim _{t \rightarrow \infty} \phi(t)=x \in M$. Show that x is a fixed point and $\lim _{t \rightarrow \infty} \dot{\phi}(t)=0$ (Hint: Show $\Phi(s, x)=x$.)

6 . Let Φ be the flow of some first-order autonomous system.
(a) Show that if T satisfies $\Phi(T, x)=x$, the same is true for any integer multiple of T. Moreover, show that we must have $T=n T(x)$ for some $n \in \mathbb{Z}$ if $T(x) \neq 0$.
(b) Show that a point x is fixed if and only if $T(x)=0$.
(c) Show that x is periodic if and only if $\gamma_{+}(x) \cap \gamma_{-}(x) \neq \emptyset$ in which case $\gamma_{+}(x)=\gamma_{-}(x)$ and $\Phi(t+T(x), x)=\Phi(t, x)$ for all $t \in \mathbb{R}$. In particular, the period is the same for all points in the same orbit.
7. A point $x \in M$ is called nonwandering if for every neighborhood U of x there is a sequence of positive times $t_{n} \rightarrow \infty$ such that $\Phi_{t_{n}}(U) \cap U \neq \emptyset$ for all t_{n}. The set of nonwandering points is denoted by $\Omega(f)$.
(a) $\Omega(f)$ is a closed invariant set (Hint: show that it is the complement of an open set).
(b) $\Omega(f)$ contains all periodic orbits (including all fixed points).
(c) $\omega_{+}(x) \subseteq \Omega(f)$ for all $x \in M$.

Find the set of nonwandering points $\Omega(f)$ for the system $f(x, y)=(y,-x)$.
8. Which of the following equations determine a submanifold of codimension one of \mathbb{R}^{2} ?
(a) $x=0$
(b) $x^{2}+y^{2}=1$.
(c) $x^{2}-y^{2}=1$.
(d) $x^{2}+y^{2}=0$.

Which of them is transversal to $f(x, y)=(x,-y), f(x, y)=(1,0)$, or $f(x, y)=(0,1)$, respectively.
9. The vector field $f(x, y)=(-y, x)$ has the periodic solution $(\cos (t), \sin (t))$. Compute the Poincaré map corresponding to $\Sigma=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y=\right.$ $0\}$
10. Consider the system

$$
\begin{align*}
\dot{x} & =x-y-x\left(x^{2}+y^{2}\right)+\frac{x y}{\sqrt{x^{2}+y^{2}}} \\
\dot{y} & =x+y-y\left(x^{2}+y^{2}\right)-\frac{x^{2}}{\sqrt{x^{2}+y^{2}}} \tag{1}
\end{align*}
$$

Show that $x_{0}(1,0)$ is not stable even though it satisfies

$$
\lim _{t \rightarrow \infty}\left|\phi(t, x)-x_{0}\right|=0 \quad \text { for all }\left|x-x_{0}\right|<1
$$

(Hint: Show that in polar coordinates the system is given by $\dot{r}=r\left(1-r^{2}\right)$, $\dot{\theta}=2 \sin (\theta / 2)^{2}$.)
11. Investigate the stability of the fixed points of

$$
\dot{x}=\mu x-x^{3}
$$

as a function of μ. Draw phase plots as a function of μ.
12. Show that $L(x, y)=x^{2}+y^{2}$ is a Liapunov function for the system

$$
\dot{x}=y, \quad \dot{y}=-\eta y-x,
$$

where $\eta \geq 0$ and investigate the stability of $\left(x_{0}, y_{0}\right)=(0,0)$.
13. Consider the mathematical pendulum. If $E=2$ what is the time it takes for the pendulum to get from $x=0$ to $x=\pi$?
14. The mathematical pendulum with friction is described by

$$
\ddot{x}=-\eta \dot{x}-\sin (x) .
$$

Is the energy still conserved in this case? Is the fixed point $(\dot{x}, x)=(0,0)$ (asymptotically) stable? How does the phase portrait change?
Discuss also the linearization

$$
\ddot{x}=-\eta \dot{x}-x .
$$

15. Suppose all eigenvalues of A satisfy $\operatorname{Re}\left(\alpha_{j}\right)<0$. Show that every solution of

$$
\dot{x}(t)=A x(t)+g(t)
$$

satisfies

$$
\lim _{t \rightarrow \infty} x(t)=0
$$

if $\lim _{t \rightarrow \infty}|g(t)|=0$ (Hint: Use the corresponding integral equation.)
16. Find the linearization of

$$
f(x)=\left(x_{2},-\sin \left(x_{1}\right)\right)
$$

and determine the stability of $x=0$ if possible.
17. Consider the system

$$
f(x)=\left(-x_{1}, x_{2}+x_{1}^{2}\right)
$$

Find the flow (Hint: Start with the equation for x_{1}.). Next, find the stable and unstable manifolds. Plot the phase portrait and compare it to the linearization.
18. Consider

$$
\dot{x}=-x, \quad \dot{y}=y^{2} .
$$

Find all invariant smooth manifolds of the form $\{(h(a), a) \mid a \in \mathbb{R}\}$ which are tangent to E^{0}.
19. Find $E^{ \pm, \alpha}$ for

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Compute $P^{ \pm}$.
20. Investigate the Duffing equation

$$
\ddot{x}=-\delta \dot{x}+x-x^{3}, \quad \delta \geq 0 .
$$

Determine the stability of the fixed points by linearization. Find the stable and unstable manifolds of the origin in the case $\delta=0$.
21. Classify the fixed points of the Lorenz equation

$$
f(x)=\left(x_{2}-x_{1}, r x_{1}-x_{2}-x_{1} x_{3}, x_{1} x_{2}-x_{3}\right), \quad r>0,
$$

according to stability. At what value of r does the number of fixed points change?
22. Let X be a Banach space and let $A: X \rightarrow X$ be a linear operator. Set

$$
\|A\|=\sup _{\|x\|=1}\|A x\|
$$

Show that this defines a norm. Moreover, show that

$$
\|A B\| \leq\|A\|\|B\|
$$

and that $\mathbb{I}+A$ is invertible if $\|A\|<1$, with inverse given by the Neumann series

$$
(\mathbb{I}-A)^{-1}=\sum_{n=0}^{\infty} A^{n} .
$$

Furthermore, $\left\|(\mathbb{I}-A)^{-1}\right\| \leq(1-\|A\|)^{-1}$.
23. Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a homeomorphism of the form $\varphi(x)=x+h(x)$ with bounded h. Show that $\varphi^{-1}(x)=x+k(x)$, where $k(x)$ is again bounded (with the same bound).
24. Let

$$
A=\left(\begin{array}{cc}
-\alpha & \beta \\
-\beta & -\alpha
\end{array}\right), \quad B=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad \alpha>0
$$

Explicitly compute the conjugacy found in the proof of Theorem 7.11.
25. Suppose $\operatorname{div} f=0$ in some simply connected domain. Show that there is a function $F(x)$ such that $f_{1}(x)=\frac{\partial F(x)}{\partial x_{2}}$ and $f_{2}(x)=-\frac{\partial F(x)}{\partial x_{1}}$. Show that every orbit $\gamma(x)$ satisfies $F(\gamma(x))=$ const.
26. (Bendixson's criterion) Suppose $\operatorname{div} f$ does not change sign and does not vanish identically in a simply connected region $U \subseteq M$. Show that there are no regular periodic orbits contained (entirely) inside U. (Hint: Suppose there is one and consider the line integral of f along this curve. Recall the Gauss theorem in \mathbb{R}^{2}.)
Use this to show that

$$
\ddot{x}+p(x) \dot{x}+q(x)=0
$$

has no regular periodic solutions if $p(x)>0$.
27. If the intersection $\omega_{+}(x) \cap \omega_{-}(x) \neq \emptyset$ contains a regular point, then x is periodic.
28. Prove Lemma 8.11.
29. (Volterra principle) Show that for any orbit of the Volterra-Lotka system the time average over one period

$$
\frac{1}{T} \int_{0}^{T} x(t) d t=1, \quad \frac{1}{T} \int_{0}^{T} y(t) d t=1
$$

is independent of the orbit. (Hint: Integrate $\frac{d}{d t} \ln (x(t))$ over one period.)
30. Show that the change of coordinates $x=\exp (q), y=\exp (p)$ transforms the Volterra-Lotka system into a Hamiltonian system with Hamiltonian $H(p, q)=L(\exp (q), \exp (p))$.
Moreover, use the same change of coordinates to transform

$$
\dot{x}=(1-y-\lambda x) x, \quad \dot{y}=\alpha(x-1-\mu y) y, \quad \alpha, \lambda, \mu>0
$$

Then use Bendixson's criterion (Problem 26) to show that there are no periodic orbits.
31. Suppose you have two species x and y such that one inhibits the growth of the other. A simple model describing such a situation would be

$$
\begin{aligned}
& \dot{x}=(A-B y) x \\
& \dot{y}=(C-D x) y
\end{aligned}, \quad A, B, C, D>0 .
$$

Find out as much as possible about this system.
32. The equation

$$
\ddot{x}+g(x) \dot{x}+x=0
$$

is also often called Liénard's equation. Show that it is equivalent to $\dot{x}=$ $y-f(x), \dot{y}=-x$ if we set $y=\dot{x}+f(x)$, where $f(x)=\int_{0}^{x} g(t) d t$.
33. Show that

$$
\dot{z}=z\left(\mu-(\alpha+\mathrm{i} \beta)|z|^{2}\right), \quad \mu \in \mathbb{R}, \alpha, \beta>0
$$

where $z(t)=x(t)+\mathrm{i} y(t)$, exhibits a Hopf bifurcation at $\mu=0$. (Hint: Use polar coordinates $z=r \mathrm{e}^{\mathrm{i} \varphi}$.)
34. Show that a closed invariant set which has a dense orbit is topologically transitive.
35. Suppose $\gamma_{\sigma}(x)$ is contained in a compact set. Show that

$$
\lim _{t \rightarrow \infty} d\left(\Phi(t, x), \omega_{\sigma}(x)\right)=0
$$

36. Suppose E is a trapping region and let $\Lambda=\omega_{+}(E)$. Then

$$
W^{+}(\Lambda)=\left\{x \in M \mid \omega_{+}(x) \subseteq \Lambda, \omega_{+}(x) \neq \emptyset\right\} .
$$

(Hint: Previous problem.)
37. Solve the Lorenz equation for the case $\sigma=0$.
38. Investigate the Lorenz equation for the case $r=\infty$ as follows. First introduce $\varepsilon=r^{-1}$. Then use the change of coordinates $(t, x, y, x) \mapsto(\tau, \xi, \eta, \zeta)$, where $\tau=\varepsilon^{-1} t, \xi=\varepsilon x, \eta=\sigma \varepsilon^{2} y$, and $\zeta=\sigma\left(\varepsilon^{2} z-\varepsilon\right)$.
Show that the resulting system for $\varepsilon=0$ is given by

$$
\xi^{\prime}=\eta, \quad \eta^{\prime}=-\xi \zeta, \quad \zeta^{\prime}=\eta \xi,
$$

which has two conserved quantities

$$
\xi^{2}-2 \zeta=2 \alpha, \quad \eta^{2}+\zeta^{2}=\beta
$$

Derive the single third order equation $\xi^{\prime \prime \prime}=-\left(\frac{3}{2} \xi^{2}-\alpha\right) \xi^{\prime}$. Integrate this equation once and observe that the result is of Newton type. Conclude that ξ (and hence η and ζ) are always periodic.
39. Consider the logistic map L_{μ} for $\mu=1$. Show that $W^{+}(0)=[0,1]$.
40. Determine the stability of all fixed points of the logistic map $L_{\mu}, 0 \leq \mu \leq 4$.
41. Consider the logistic map L_{μ} for $\mu=4$. show that 0 is a repelling fixed point. Find an orbit which is both forward and backward asymptotic to 0.
42. Find an explicit formula for the Fibonacci numbers defined via

$$
x(m)=x(m-1)+x(m-2), \quad x(1)=x(2)=1 .
$$

43. Show item (i) from the proof of Lemma 11.1.
44. Show item (ii) from the proof of Lemma 11.1.
45. Show that a closed invariant set which has a dense orbit is topologically transitive.
46. Show that T_{2} and L_{4} are topologically equivalent via the map $\varphi(x)=$ $\sin \left(\frac{\pi x}{2}\right)^{2}$ (i.e., show that $\varphi:[0,1] \rightarrow[0,1]$ is a homeomorphism and that $\left.\varphi \circ T_{2}=L_{4} \circ \varphi\right)$.
47. Show that two different ternary expansions define the same number, $\sum_{n \in \mathbb{N}} x_{n} 3^{-n}=$ $\sum_{n \in \mathbb{N}} y_{n} 3^{-n}$, if and only if there is some $n_{0} \in \mathbb{N}$ such that $x_{j}=y_{j}$ for $n<n_{0}, x_{j}=y_{j} \pm 1$ for $n=n_{0}$, and $x_{j}=y_{j} \mp 2$ for $n>n_{0}$. Show that every $x \in[0,1]$ has a unique expansions if the expansions which end in 1 or $1 \overline{2}$ are excluded.
48. Show that for $\mu=3$ we have $\Lambda_{n}=\left\{x \mid x_{j} \neq 1,1 \leq j \leq n\right\}$, where x_{j} are the digits in the ternary expansion as in the previous problem.
