UE Funktionalanalysis 1

Gerald Teschl

WS2009/10

1. Show that $|d(x, y)-d(z, y)| \leq d(x, z)$.
2. Show the quadrangle inequality $\left|d(x, y)-d\left(x^{\prime}, y^{\prime}\right)\right| \leq d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)$.
3. Let X be some space together with a sequence of distance functions d_{n}, $n \in \mathbb{N}$. Show that

$$
d(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{d_{n}(x, y)}{1+d_{n}(x, y)}
$$

is again a distance function.
4. Show that the closure satisfies $\overline{\bar{U}}=\bar{U}$.
5. Let $U \subseteq V$ be subsets of a metric space X. Show that if U is dense in V and V is dense in X, then U is dense in X.
6. Show that any open set $O \subseteq \mathbb{R}$ can be written as a countable union of disjoint intervals. (Hint: Let $\left\{I_{\alpha}\right\}$ be the set of all maximal subintervals of O; that is, $I_{\alpha} \subseteq O$ and there is no other subinterval of O which contains I_{α}. Then this is a cover of disjoint intervals which has a countable subcover.)
7. Let X be a Banach space. Show that $\sum_{j=1}^{\infty}\left\|f_{j}\right\|<\infty$ implies that

$$
\sum_{j=1}^{\infty} f_{j}=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} f_{j}
$$

exists. The series is called absolutely convergent in this case.
8. Show that $\ell^{\infty}(\mathbb{N})$ is a Banach space.
9. Show that $\ell^{\infty}(\mathbb{N})$ is not separable. (Hint: Consider sequences which take only the value one and zero. How many are there? What is the distance between two such sequences?)
10. Show that in a Hilbert space

$$
\sum_{1 \leq j<k \leq n}\left\|x_{j}-x_{k}\right\|^{2}+\left\|\sum_{1 \leq j \leq n} x_{j}\right\|^{2}=n \sum_{1 \leq j \leq n}\left\|x_{j}\right\|^{2} .
$$

11. Show that the maximum norm on $C[0,1]$ does not satisfy the parallelogram law.
12. In a Banach space the unit ball is convex by the triangle inequality. A Banach space X is called uniformly convex if for every $\varepsilon>0$ there is some δ such that $\|x\| \leq 1,\|y\| \leq 1$, and $\left\|\frac{x+y}{2}\right\| \geq 1-\delta$ imply $\|x-y\| \leq \varepsilon$.

Geometrically this implies that if the average of two vectors inside the closed unit ball is close to the boundary, then they must be close to each other.
Show that a Hilbert space is uniformly convex and that one can choose $\delta(\varepsilon)=1-\sqrt{1-\frac{\varepsilon^{2}}{4}}$. Draw the unit ball for \mathbb{R}^{2} for the norms $\|x\|_{1}=$ $\left|x_{1}\right|+\left|x_{2}\right|,\|x\|_{2}=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}}$, and $\|x\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|\right)$. With which of these norms is \mathbb{R}^{2} uniformly convex?
(Hint: For the first part use the parallelogram law.)
13. Consider $X=\mathbb{C}^{n}$ and let $A: X \rightarrow X$ be a matrix. Equip X with the norm (show that this is a norm)

$$
\|x\|_{\infty}=\max _{1 \leq j \leq n}\left|x_{j}\right|
$$

and compute the operator norm $\|A\|$ with respect to this matrix in terms of the matrix entries. Do the same with respect to the norm

$$
\|x\|_{1}=\sum_{1 \leq j \leq n}\left|x_{j}\right| .
$$

14. Show that the integral operator

$$
(K f)(x)=\int_{0}^{1} K(x, y) f(y) d y
$$

where $K(x, y) \in C([0,1] \times[0,1])$, defined on $\mathfrak{D}(K)=C[0,1]$ is a bounded operator both in $X=C[0,1]$ (max norm) and $X=\mathcal{L}_{\text {cont }}^{2}(0,1)$.
15. Show that the set of differentiable functions $C^{1}(I)$ becomes a Banach space if we set $\|f\|_{\infty, 1}=\max _{x \in I}|f(x)|+\max _{x \in I}\left|f^{\prime}(x)\right|$.
16. Show that $\|A B\| \leq\|A\|\|B\|$ for every $A, B \in \mathfrak{L}(X)$. Conclude that the multiplication is continuous: $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$ imply $A_{n} B_{n} \rightarrow A B$.
17. Let

$$
f(z)=\sum_{j=0}^{\infty} f_{j} z^{j}, \quad|z|<R
$$

be a convergent power series with convergence radius $R>0$. Suppose A is a bounded operator with $\|A\|<R$. Show that

$$
f(A)=\sum_{j=0}^{\infty} f_{j} A^{j}
$$

exists and defines a bounded linear operator.
18. Let $\left\{u_{j}\right\}$ be some orthonormal basis. Show that a bounded linear operator A is uniquely determined by its matrix elements $A_{j k}=\left\langle u_{j}, A u_{k}\right\rangle$ with respect to this basis.
19. Show that an orthogonal projection $P_{M} \neq 0$ has norm one.
20. Suppose $P \in \mathfrak{L}(\mathfrak{H})$ satisfies

$$
P^{2}=P \quad \text { and } \quad\langle P f, g\rangle=\langle f, P g\rangle
$$

and set $M=\operatorname{Ran}(P)$. Show

- $P f=f$ for $f \in M$ and M is closed,
- $g \in M^{\perp}$ implies $P g \in M^{\perp}$ and thus $P g=0$,
and conclude $P=P_{M}$.

21. Let \mathfrak{H} a Hilbert space and let $u, v \in \mathfrak{H}$. Show that the operator

$$
A f=\langle u, f\rangle v
$$

is bounded and compute its norm. Compute the adjoint of A.
22. Prove

$$
\|A\|=\sup _{\|f\|=\|g\|=1}|\langle f, A g\rangle|
$$

(Hint: Use $\|f\|=\sup _{\|g\|=1}|\langle g, f\rangle|$.)
23. Show

$$
\operatorname{Ker}\left(A^{*}\right)=\operatorname{Ran}(A)^{\perp}
$$

24. Show that compact operators form an ideal.
25. Show that adjoint of the integral operator

$$
(K f)(x)=\int_{a}^{b} K(x, y) f(y) d y
$$

where $K(x, y) \in C([a, b] \times[a, b])$, defined on $\mathcal{L}_{\text {cont }}^{2}(a, b)$, is the integral operator with kernel $K(y, x)^{*}$.
26. Show that if A is bounded, then every eigenvalue α satisfies $|\alpha| \leq\|A\|$.
27. Find the eigenvalues and eigenfunctions of the integral operator

$$
(K f)(x)=\int_{0}^{1} u(x) v(y) f(y) d y
$$

in $\mathcal{L}_{\text {cont }}^{2}(0,1)$, where $u(x)$ and $v(x)$ are some given continuous functions.
28. Find the eigenvalues and eigenfunctions of the integral operator

$$
(K f)(x)=2 \int_{0}^{1}(2 x y-x-y+1) f(y) d y
$$

in $\mathcal{L}_{\text {cont }}^{2}(0,1)$.
29. Show that the resolvent $R_{A}(z)=(A-z)^{-1}$ (provided it exists and is densely defined) of a symmetric operator A is again symmetric for $z \in \mathbb{R}$. (Hint: $g \in \mathfrak{D}\left(R_{A}(z)\right)$ if and only if $g=(A-z) f$ for some $f \in \mathfrak{D}(A)$).
30. Show that $\operatorname{Ker}\left(A^{*} A\right)=\operatorname{Ker}(A)$ for any $A \in \mathfrak{L}(\mathfrak{H})$.
31. Compute $\operatorname{Ker}(1-K)$ and $\operatorname{Ran}(1-K)^{\perp}$ for the operator $K=\langle v,\rangle$.$u , where$ $u, v \in \mathfrak{H}$ satisfy $\langle u, v\rangle=1$.
32. Call two numbers $x, y \in \mathbb{R} / \mathbb{Z}$ equivalent if $x-y$ is rational. Construct the set V by choosing one representative from each equivalence class. Show that V cannot be measurable with respect to any nontrivial finite translation invariant measure on \mathbb{R} / \mathbb{Z}. (Hint: How can you build up \mathbb{R} / \mathbb{Z} from translations of V ?)
33. Show that the set $B(X)$ of bounded measurable functions with the sup norm is a Banach space. Show that the set $S(X)$ of simple functions is dense in $B(X)$. Show that the integral is a bounded linear functional on $B(X)$ if $\mu(X)<\infty$. (Hence BLT Theorem could be used to extend the integral from simple to bounded measurable functions.)
34. Show that the dominated convergence theorem implies (under the same assumptions)

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right| d \mu=0
$$

35. Let $X \subseteq \mathbb{R}, Y$ be some measure space, and $f: X \times Y \rightarrow \mathbb{R}$. Suppose $y \mapsto f(x, y)$ is measurable for every x and $x \mapsto f(x, y)$ is continuous for every y. Show that

$$
F(x)=\int_{A} f(x, y) d \mu(y)
$$

is continuous if there is an integrable function $g(y)$ such that $|f(x, y)| \leq$ $g(y)$.
36. Let $X \subseteq \mathbb{R}, Y$ be some measure space, and $f: X \times Y \rightarrow \mathbb{R}$. Suppose $y \mapsto f(x, y)$ is measurable for all x and $x \mapsto f(x, y)$ is differentiable for a.e. y. Show that

$$
F(x)=\int_{A} f(x, y) d \mu(y)
$$

is differentiable if there is an integrable function $g(y)$ such that $\left|\frac{\partial}{\partial x} f(x, y)\right| \leq$ $g(y)$. Moreover, $y \mapsto \frac{\partial}{\partial x} f(x, y)$ is measurable and

$$
F^{\prime}(x)=\int_{A} \frac{\partial}{\partial x} f(x, y) d \mu(y)
$$

in this case.
37. Suppose $\mu(X)<\infty$. Show that $L^{\infty}(X, d \mu) \subseteq L^{p}(X, d \mu)$ and

$$
\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}, \quad f \in L^{\infty}(X, d \mu)
$$

38. Construct a function $f \in L^{p}(0,1)$ which has a singularity at every rational number in $[0,1]$ (such that the essential supremum is infinite on every open subinterval). (Hint: Start with the function $f_{0}(x)=|x|^{-\alpha}$ which has a single singularity at 0 , then $f_{j}(x)=f_{0}\left(x-x_{j}\right)$ has a singularity at x_{j}.)
39. Show the following generalization of Hölder's inequality:

$$
\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q}, \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{r}
$$

40. Show that

$$
\|u\|_{p_{0}} \leq \mu(X)^{\frac{1}{p_{0}}-\frac{1}{p}}\|u\|_{p}, \quad 1 \leq p_{0} \leq p
$$

(Hint: Hölder's inequality.)
41. Let $0<\theta<1$. Show that if $f \in L^{p_{1}} \cap L^{p_{2}}$, then $f \in L^{p}$ and

$$
\|f\|_{p} \leq\|f\|_{p_{1}}^{\theta}\|f\|_{p_{2}}^{1-\theta}
$$

where $\frac{1}{p}=\frac{\theta}{p_{1}}+\frac{1-\theta}{p_{2}}$.
42. Let $\mathfrak{H}=\ell^{2}(\mathbb{N})$ and let A be multiplication by a sequence $a=\left(a_{j}\right)_{j=1}^{\infty}$. Show that A is Hilbert-Schmidt if and only if $a \in \ell^{2}(\mathbb{N})$. Furthermore, show that $\|A\|_{H S}=\|a\|$ in this case.
43. Show that $K: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N}), f_{n} \mapsto \sum_{j \in \mathbb{N}} k_{n+j} f_{j}$ is Hilbert-Schmidt with $\|K\|_{H S} \leq\|c\|_{1}$ if $\left|k_{j}\right| \leq c_{j}$, where c_{j} is decreasing and summable.
44. Suppose $A: \mathfrak{D}(A) \rightarrow \operatorname{Ran}(A)$ is closed and injective. Show that A^{-1} defined on $\mathfrak{D}\left(A^{-1}\right)=\operatorname{Ran}(A)$ is closed as well.
Conclude that in this case $\operatorname{Ran}(A)$ is closed if and only if A^{-1} is bounded.
45. Show that the differential operator $A=\frac{d}{d x}$ defined on $\mathfrak{D}(A)=C^{1}[0,1] \subset$ $C[0,1]$ (sup norm) is a closed operator.
46. Let X be some Banach space. Show that

$$
\|x\|=\sup _{\ell \in X^{*},\|\ell\|=1}|\ell(x)|
$$

for all $x \in X$.
47. Show that $\left\|l_{y}\right\|=\|y\|_{q}$, where $l_{y} \in \ell^{p}(\mathbb{N})^{*}$ is given by

$$
l_{y}(x)=\sum_{n \in \mathbb{N}} y_{n} x_{n}
$$

(Hint: Choose $x \in \ell^{p}$ such that $x_{n} y_{n}=\left|y_{n}\right|^{q}$.)
48. Show that every $l \in \ell^{p}(\mathbb{N})^{*}, 1 \leq p<\infty$, can be written as

$$
l(x)=\sum_{n \in \mathbb{N}} y_{n} x_{n}
$$

with some $y \in \ell^{q}(\mathbb{N})$. (Hint: To see $y \in \ell^{q}(\mathbb{N})$ consider x^{N} defined such that $x_{n} y_{n}=\left|y_{n}\right|^{q}$ for $n \leq N$ and $x_{n}=0$ for $n>N$. Now look at $\left.\left|\ell\left(x^{N}\right)\right| \leq\|\ell\|\left\|x^{N}\right\|_{p}.\right)$
49. Let $c_{0}(\mathbb{N}) \subset \ell^{\infty}(\mathbb{N})$ be the subspace of sequences which converge to 0 , and $c(\mathbb{N}) \subset \ell^{\infty}(\mathbb{N})$ the subspace of convergent sequences.
(a) Show that $c_{0}(\mathbb{N}), c(\mathbb{N})$ are both Banach spaces and that $c(\mathbb{N})=$ $\operatorname{span}\left\{c_{0}(\mathbb{N}), e\right\}$, where $e=(1,1,1, \ldots) \in c(\mathbb{N})$.
(b) Show that every $l \in c_{0}(\mathbb{N})^{*}$ can be written as

$$
l(x)=\sum_{n \in \mathbb{N}} y_{n} x_{n}
$$

with some $y \in \ell^{1}(\mathbb{N})$ which satisfies $\|y\|_{1}=\|\ell\|$.
(c) Show that every $l \in c(\mathbb{N})^{*}$ can be written as

$$
l(x)=\sum_{n \in \mathbb{N}} y_{n} x_{n}+y_{0} \lim _{n \rightarrow \infty} x_{n}
$$

with some $y \in \ell^{1}(\mathbb{N})$ which satisfies $\left|y_{0}\right|+\|y\|_{1}=\|\ell\|$.
50. Suppose $\ell_{n} \rightarrow \ell$ in X^{*} and $x_{n} \rightharpoonup x$ in X. Then $\ell_{n}\left(x_{n}\right) \rightarrow \ell(x)$.
51. Show that $x_{n} \rightharpoonup x$ implies $A x_{n} \rightharpoonup A x$ for $A \in \mathfrak{L}(X)$.
52. Show that if $\left\{\ell_{j}\right\} \subseteq X^{*}$ is some total set, then $x_{n} \rightharpoonup x$ if and only if x_{n} is bounded and $\ell_{j}\left(x_{n}\right) \rightarrow \ell_{j}(x)$ for all j. Show that this is wrong without the boundedness assumption (Hint: Take e.g. $X=\ell^{2}(\mathbb{N})$).
53. Show that for $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $g \in L^{p}\left(\mathbb{R}^{n}\right)$, the convolution

$$
(g * f)(x)=\int_{\mathbb{R}^{n}} g(x-y) f(y) d y=\int_{\mathbb{R}^{n}} g(y) f(x-y) d y
$$

is in $L^{p}\left(\mathbb{R}^{n}\right)$ and satisfies Young's inequality

$$
\|f * g\|_{p} \leq\|f\|_{1}\|g\|_{p} .
$$

(Hint: Without restriction $\|f\|_{1}=1$. Now use Jensen and Fubini.)
54. Show that the multiplication in a Banach algebra X is continuous: $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ imply $x_{n} y_{n} \rightarrow x y$.
55. Show that $L^{1}\left(\mathbb{R}^{n}\right)$ with convolution as multiplication is a commutative Banach algebra without identity.
56. Show that $\sigma(x) \subset\{t \in \mathbb{R} \mid t \geq 0\}$ if x is positive.

