UE Funktionalanalysis 1 Gerald Teschl

WS2009/10

- 1. Show that $|d(x,y) d(z,y)| \le d(x,z)$.
- 2. Show the **quadrangle inequality** $|d(x,y) d(x',y')| \le d(x,x') + d(y,y')$.
- 3. Let X be some space together with a sequence of distance functions d_n , $n \in \mathbb{N}$. Show that

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{d_n(x,y)}{1 + d_n(x,y)}$$

is again a distance function.

- 4. Show that the closure satisfies $\overline{\overline{U}} = \overline{U}$.
- 5. Let $U \subseteq V$ be subsets of a metric space X. Show that if U is dense in V and V is dense in X, then U is dense in X.
- 6. Show that any open set $O \subseteq \mathbb{R}$ can be written as a countable union of disjoint intervals. (Hint: Let $\{I_{\alpha}\}$ be the set of all maximal subintervals of O; that is, $I_{\alpha} \subseteq O$ and there is no other subinterval of O which contains I_{α} . Then this is a cover of disjoint intervals which has a countable subcover.)
- 7. Let X be a Banach space. Show that $\sum_{j=1}^{\infty} ||f_j|| < \infty$ implies that

$$\sum_{j=1}^{\infty} f_j = \lim_{n \to \infty} \sum_{j=1}^{n} f_j$$

exists. The series is called **absolutely convergent** in this case.

- 8. Show that $\ell^{\infty}(\mathbb{N})$ is a Banach space.
- 9. Show that $\ell^{\infty}(\mathbb{N})$ is not separable. (Hint: Consider sequences which take only the value one and zero. How many are there? What is the distance between two such sequences?)
- 10. Show that in a Hilbert space

$$\sum_{1 \le j < k \le n} \|x_j - x_k\|^2 + \|\sum_{1 \le j \le n} x_j\|^2 = n \sum_{1 \le j \le n} \|x_j\|^2.$$

- 11. Show that the maximum norm on C[0, 1] does not satisfy the parallelogram law.
- 12. In a Banach space the unit ball is convex by the triangle inequality. A Banach space X is called **uniformly convex** if for every $\varepsilon > 0$ there is some δ such that $||x|| \leq 1$, $||y|| \leq 1$, and $||\frac{x+y}{2}|| \geq 1 \delta$ imply $||x-y|| \leq \varepsilon$.

Geometrically this implies that if the average of two vectors inside the closed unit ball is close to the boundary, then they must be close to each other.

Show that a Hilbert space is uniformly convex and that one can choose $\delta(\varepsilon) = 1 - \sqrt{1 - \frac{\varepsilon^2}{4}}$. Draw the unit ball for \mathbb{R}^2 for the norms $||x||_1 = |x_1| + |x_2|$, $||x||_2 = \sqrt{|x_1|^2 + |x_2|^2}$, and $||x||_{\infty} = \max(|x_1|, |x_2|)$. With which of these norms is \mathbb{R}^2 uniformly convex?

(Hint: For the first part use the parallelogram law.)

13. Consider $X = \mathbb{C}^n$ and let $A : X \to X$ be a matrix. Equip X with the norm (show that this is a norm)

$$\|x\|_{\infty} = \max_{1 \le j \le n} |x_j|$$

and compute the operator norm ||A|| with respect to this matrix in terms of the matrix entries. Do the same with respect to the norm

$$||x||_1 = \sum_{1 \le j \le n} |x_j|.$$

14. Show that the integral operator

$$(Kf)(x) = \int_0^1 K(x, y) f(y) dy,$$

where $K(x, y) \in C([0, 1] \times [0, 1])$, defined on $\mathfrak{D}(K) = C[0, 1]$ is a bounded operator both in X = C[0, 1] (max norm) and $X = \mathcal{L}^2_{cont}(0, 1)$.

- 15. Show that the set of differentiable functions $C^1(I)$ becomes a Banach space if we set $||f||_{\infty,1} = \max_{x \in I} |f(x)| + \max_{x \in I} |f'(x)|$.
- 16. Show that $||AB|| \leq ||A|| ||B||$ for every $A, B \in \mathfrak{L}(X)$. Conclude that the multiplication is continuous: $A_n \to A$ and $B_n \to B$ imply $A_n B_n \to AB$.
- 17. Let

$$f(z) = \sum_{j=0}^{\infty} f_j z^j, \qquad |z| < R,$$

be a convergent power series with convergence radius R > 0. Suppose A is a bounded operator with ||A|| < R. Show that

$$f(A) = \sum_{j=0}^{\infty} f_j A^j$$

exists and defines a bounded linear operator.

- 18. Let $\{u_j\}$ be some orthonormal basis. Show that a bounded linear operator A is uniquely determined by its matrix elements $A_{jk} = \langle u_j, Au_k \rangle$ with respect to this basis.
- 19. Show that an orthogonal projection $P_M \neq 0$ has norm one.

20. Suppose $P \in \mathfrak{L}(\mathfrak{H})$ satisfies

$$P^2 = P$$
 and $\langle Pf, g \rangle = \langle f, Pg \rangle$

and set $M = \operatorname{Ran}(P)$. Show

- Pf = f for $f \in M$ and M is closed,
- $g \in M^{\perp}$ implies $Pg \in M^{\perp}$ and thus Pg = 0,

and conclude $P = P_M$.

21. Let \mathfrak{H} a Hilbert space and let $u, v \in \mathfrak{H}$. Show that the operator

$$Af = \langle u, f \rangle v$$

is bounded and compute its norm. Compute the adjoint of A.

22. Prove

$$\|A\| = \sup_{\|f\| = \|g\| = 1} |\langle f, Ag \rangle|$$

(Hint: Use $||f|| = \sup_{||g||=1} |\langle g, f \rangle|$.)

23. Show

$$\operatorname{Ker}(A^*) = \operatorname{Ran}(A)^{\perp}.$$

- 24. Show that compact operators form an ideal.
- 25. Show that adjoint of the integral operator

$$(Kf)(x) = \int_{a}^{b} K(x, y) f(y) dy,$$

where $K(x,y) \in C([a,b] \times [a,b])$, defined on $\mathcal{L}^2_{cont}(a,b)$, is the integral operator with kernel $K(y,x)^*$.

- 26. Show that if A is bounded, then every eigenvalue α satisfies $|\alpha| \leq ||A||$.
- 27. Find the eigenvalues and eigenfunctions of the integral operator

$$(Kf)(x) = \int_0^1 u(x)v(y)f(y)dy$$

in $\mathcal{L}_{cont}^2(0,1)$, where u(x) and v(x) are some given continuous functions.

28. Find the eigenvalues and eigenfunctions of the integral operator

$$(Kf)(x) = 2\int_0^1 (2xy - x - y + 1)f(y)dy$$

in $\mathcal{L}_{cont}^2(0,1)$.

29. Show that the resolvent $R_A(z) = (A - z)^{-1}$ (provided it exists and is densely defined) of a symmetric operator A is again symmetric for $z \in \mathbb{R}$. (Hint: $g \in \mathfrak{D}(R_A(z))$ if and only if g = (A - z)f for some $f \in \mathfrak{D}(A)$).

- 30. Show that $\operatorname{Ker}(A^*A) = \operatorname{Ker}(A)$ for any $A \in \mathfrak{L}(\mathfrak{H})$.
- 31. Compute $\operatorname{Ker}(1-K)$ and $\operatorname{Ran}(1-K)^{\perp}$ for the operator $K = \langle v, . \rangle u$, where $u, v \in \mathfrak{H}$ satisfy $\langle u, v \rangle = 1$.
- 32. Call two numbers $x, y \in \mathbb{R}/\mathbb{Z}$ equivalent if x y is rational. Construct the set V by choosing one representative from each equivalence class. Show that V cannot be measurable with respect to any nontrivial finite translation invariant measure on \mathbb{R}/\mathbb{Z} . (Hint: How can you build up \mathbb{R}/\mathbb{Z} from translations of V?)
- 33. Show that the set B(X) of bounded measurable functions with the sup norm is a Banach space. Show that the set S(X) of simple functions is dense in B(X). Show that the integral is a bounded linear functional on B(X) if $\mu(X) < \infty$. (Hence BLT Theorem could be used to extend the integral from simple to bounded measurable functions.)
- 34. Show that the dominated convergence theorem implies (under the same assumptions)

$$\lim_{n \to \infty} \int |f_n - f| d\mu = 0.$$

35. Let $X \subseteq \mathbb{R}$, Y be some measure space, and $f : X \times Y \to \mathbb{R}$. Suppose $y \mapsto f(x, y)$ is measurable for every x and $x \mapsto f(x, y)$ is continuous for every y. Show that

$$F(x) = \int_{A} f(x, y) \, d\mu(y)$$

is continuous if there is an integrable function g(y) such that $|f(x,y)| \le g(y)$.

36. Let $X \subseteq \mathbb{R}$, Y be some measure space, and $f : X \times Y \to \mathbb{R}$. Suppose $y \mapsto f(x, y)$ is measurable for all x and $x \mapsto f(x, y)$ is differentiable for a.e. y. Show that

$$F(x) = \int_{A} f(x, y) \, d\mu(y)$$

is differentiable if there is an integrable function g(y) such that $\left|\frac{\partial}{\partial x}f(x,y)\right| \leq g(y)$. Moreover, $y \mapsto \frac{\partial}{\partial x}f(x,y)$ is measurable and

$$F'(x) = \int_A \frac{\partial}{\partial x} f(x, y) \, d\mu(y)$$

in this case.

37. Suppose $\mu(X) < \infty$. Show that $L^{\infty}(X, d\mu) \subseteq L^{p}(X, d\mu)$ and

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}, \qquad f \in L^{\infty}(X, d\mu).$$

38. Construct a function $f \in L^p(0, 1)$ which has a singularity at every rational number in [0, 1] (such that the essential supremum is infinite on every open subinterval). (Hint: Start with the function $f_0(x) = |x|^{-\alpha}$ which has a single singularity at 0, then $f_j(x) = f_0(x - x_j)$ has a singularity at x_j .)

39. Show the following generalization of Hölder's inequality:

$$||fg||_r \le ||f||_p ||g||_q, \qquad \frac{1}{p} + \frac{1}{q} = \frac{1}{r}.$$

40. Show that

$$||u||_{p_0} \le \mu(X)^{\frac{1}{p_0} - \frac{1}{p}} ||u||_p, \qquad 1 \le p_0 \le p.$$

(Hint: Hölder's inequality.)

41. Let $0 < \theta < 1$. Show that if $f \in L^{p_1} \cap L^{p_2}$, then $f \in L^p$ and

$$||f||_p \le ||f||_{p_1}^{\theta} ||f||_{p_2}^{1-\theta},$$

where $\frac{1}{p} = \frac{\theta}{p_1} + \frac{1-\theta}{p_2}$.

- 42. Let $\mathfrak{H} = \ell^2(\mathbb{N})$ and let A be multiplication by a sequence $a = (a_j)_{j=1}^{\infty}$. Show that A is Hilbert–Schmidt if and only if $a \in \ell^2(\mathbb{N})$. Furthermore, show that $||A||_{HS} = ||a||$ in this case.
- 43. Show that $K : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N}), f_n \mapsto \sum_{j \in \mathbb{N}} k_{n+j} f_j$ is Hilbert–Schmidt with $||K||_{HS} \leq ||c||_1$ if $|k_j| \leq c_j$, where c_j is decreasing and summable.
- 44. Suppose $A : \mathfrak{D}(A) \to \operatorname{Ran}(A)$ is closed and injective. Show that A^{-1} defined on $\mathfrak{D}(A^{-1}) = \operatorname{Ran}(A)$ is closed as well.

Conclude that in this case $\operatorname{Ran}(A)$ is closed if and only if A^{-1} is bounded.

- 45. Show that the differential operator $A = \frac{d}{dx}$ defined on $\mathfrak{D}(A) = C^1[0,1] \subset C[0,1]$ (sup norm) is a closed operator.
- 46. Let X be some Banach space. Show that

$$||x|| = \sup_{\ell \in X^*, \, \|\ell\|=1} |\ell(x)|$$

for all $x \in X$.

47. Show that $||l_y|| = ||y||_q$, where $l_y \in \ell^p(\mathbb{N})^*$ is given by

$$l_y(x) = \sum_{n \in \mathbb{N}} y_n x_n.$$

(Hint: Choose $x \in \ell^p$ such that $x_n y_n = |y_n|^q$.)

48. Show that every $l \in \ell^p(\mathbb{N})^*$, $1 \leq p < \infty$, can be written as

$$l(x) = \sum_{n \in \mathbb{N}} y_n x_n$$

with some $y \in \ell^q(\mathbb{N})$. (Hint: To see $y \in \ell^q(\mathbb{N})$ consider x^N defined such that $x_n y_n = |y_n|^q$ for $n \leq N$ and $x_n = 0$ for n > N. Now look at $|\ell(x^N)| \leq ||\ell|| ||x^N||_p$.)

49. Let $c_0(\mathbb{N}) \subset \ell^{\infty}(\mathbb{N})$ be the subspace of sequences which converge to 0, and $c(\mathbb{N}) \subset \ell^{\infty}(\mathbb{N})$ the subspace of convergent sequences.

- (a) Show that $c_0(\mathbb{N})$, $c(\mathbb{N})$ are both Banach spaces and that $c(\mathbb{N}) = \text{span}\{c_0(\mathbb{N}), e\}$, where $e = (1, 1, 1, ...) \in c(\mathbb{N})$.
- (b) Show that every $l \in c_0(\mathbb{N})^*$ can be written as

$$l(x) = \sum_{n \in \mathbb{N}} y_n x_n$$

with some $y \in \ell^1(\mathbb{N})$ which satisfies $\|y\|_1 = \|\ell\|$.

(c) Show that every $l \in c(\mathbb{N})^*$ can be written as

$$l(x) = \sum_{n \in \mathbb{N}} y_n x_n + y_0 \lim_{n \to \infty} x_n$$

with some $y \in \ell^1(\mathbb{N})$ which satisfies $|y_0| + ||y||_1 = ||\ell||$.

- 50. Suppose $\ell_n \to \ell$ in X^* and $x_n \rightharpoonup x$ in X. Then $\ell_n(x_n) \to \ell(x)$.
- 51. Show that $x_n \rightharpoonup x$ implies $Ax_n \rightharpoonup Ax$ for $A \in \mathfrak{L}(X)$.
- 52. Show that if $\{\ell_j\} \subseteq X^*$ is some total set, then $x_n \to x$ if and only if x_n is bounded and $\ell_j(x_n) \to \ell_j(x)$ for all j. Show that this is wrong without the boundedness assumption (Hint: Take e.g. $X = \ell^2(\mathbb{N})$).
- 53. Show that for $f \in L^1(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$, the convolution

$$(g*f)(x) = \int_{\mathbb{R}^n} g(x-y)f(y)dy = \int_{\mathbb{R}^n} g(y)f(x-y)dy$$

is in $L^p(\mathbb{R}^n)$ and satisfies Young's inequality

$$||f * g||_p \le ||f||_1 ||g||_p.$$

(Hint: Without restriction $||f||_1 = 1$. Now use Jensen and Fubini.)

- 54. Show that the multiplication in a Banach algebra X is continuous: $x_n \to x$ and $y_n \to y$ imply $x_n y_n \to xy$.
- 55. Show that $L^1(\mathbb{R}^n)$ with convolution as multiplication is a commutative Banach algebra without identity.
- 56. Show that $\sigma(x) \subset \{t \in \mathbb{R} | t \ge 0\}$ if x is positive.