PS Topologie und Funktionalanalysis Giacomo Sodini und Gerald Teschl WS2023/24

Note: References refer to the lecture notes.

1. Suppose $\sum_{n=1}^{\infty} |c_n| < \infty$. Show that

$$u(t,x) := \sum_{n=1}^{\infty} c_n e^{-(\pi n)^2 t} \sin(n\pi x),$$

is continuous for $(t, x) \in [0, \infty) \times [0, 1]$ and solves the heat equation for $(t, x) \in (0, \infty) \times [0, 1]$. (Hint: Weierstrass M-test. When can you interchange the order of summation and differentiation?)

- 2. Show that $|||f|| ||g||| \le ||f g||$.
- 3. Let X be a Banach space. Show that the norm, vector addition, and multiplication by scalars are continuous. That is, if $f_n \to f$, $g_n \to g$, and $\alpha_n \to \alpha$, then $||f_n|| \to ||f||$, $f_n + g_n \to f + g$, and $\alpha_n g_n \to \alpha g$.
- 4. While $\ell^1(\mathbb{N})$ is separable, it still has room for an uncountable set of linearly independent vectors. Show this by considering vectors of the form

 $a^{\alpha} = (1, \alpha, \alpha^2, \dots), \qquad \alpha \in (0, 1).$

(Hint: Recall the Vandermonde determinant.)

5. Prove Young's inequality

$$\alpha^{1/p}\beta^{1/q} \leq \frac{1}{p}\alpha + \frac{1}{q}\beta, \qquad \frac{1}{p} + \frac{1}{q} = 1, \quad \alpha, \beta \geq 0.$$

Show that equality occurs precisely if $\alpha = \beta$. (Hint: Take logarithms on both sides.)

- 6. Show that $\ell^p(\mathbb{N}), 1 \leq p < \infty$, is complete.
- 7. Show that $\ell^{\infty}(\mathbb{N})$ is a Banach space.
- 8. Is $\ell^1(\mathbb{N})$ a closed subspace of $\ell^{\infty}(\mathbb{N})$ (with respect to the $\|.\|_{\infty}$ norm)? If not, what is its closure?
- 9. Show that $\ell^{\infty}(\mathbb{N})$ is not separable. (Hint: Consider sequences which take only the value one and zero. How many are there? What is the distance between two such sequences?)
- 10. Show that there is equality in the Hölder inequality for 1 if andonly if either <math>a = 0 or $|b_j|^q = \alpha |a_j|^p$ for all $j \in \mathbb{N}$. Show that we have equality in the triangle inequality for $\ell^1(\mathbb{N})$ if and only if $a_j b_j^* \ge 0$ for all $j \in \mathbb{N}$ (here the '* denotes complex conjugation). Show that we have equality in the triangle inequality for $\ell^p(\mathbb{N})$ with 1 if and only if<math>a = 0 or $b = \alpha a$ with $\alpha \ge 0$.

- 11. Let X be a normed space. Show that the following conditions are equivalent.
 - (i) If ||x + y|| = ||x|| + ||y|| then $y = \alpha x$ for some $\alpha \ge 0$ or x = 0.
 - (ii) If ||x|| = ||y|| = 1 and $x \neq y$ then $||\lambda x + (1-\lambda)y|| < 1$ for all $0 < \lambda < 1$.
 - (iii) If ||x|| = ||y|| = 1 and $x \neq y$ then $\frac{1}{2}||x+y|| < 1$.
 - (iv) The function $x \mapsto ||x||^2$ is strictly convex.

A norm satisfying one of them is called strictly convex.

Show that $\ell^p(\mathbb{N})$ is strictly convex for $1 but not for <math>p = 1, \infty$.

12. Show that $p_0 \leq p$ implies $\ell^{p_0}(\mathbb{N}) \subset \ell^p(\mathbb{N})$ and $||a||_p \leq ||a||_{p_0}$. Moreover, show

$$\lim_{p \to \infty} \|a\|_p = \|a\|_{\infty}.$$

- 13. Consider X = C([-1, 1]). Which of the following subsets are subspaces of X? If yes, are they closed?
 - (i) monotone functions
 - (ii) even functions
 - (iii) continuous piecewise linear functions
 - (iv) $\{f \in C([-1,1]) | f(c) = f_0\}$ for some fixed $c \in [-1,1]$ and $f_0 \in \mathbb{R}$
- 14. Let I be a compact interval. Show that the set $Y := \{f \in C(I, \mathbb{R}) | f(x) > 0\}$ is open in $X := C(I, \mathbb{R})$. Compute its closure.
- 15. Compute the closure of the following subsets of $\ell^1(\mathbb{N})$: (i) $B_1 := \{a \in \ell^1(\mathbb{N}) | \sum_{j \in \mathbb{N}} |a_j|^2 \le 1\}$. (ii) $B_\infty := \{a \in \ell^1(\mathbb{N}) | \sum_{j \in \mathbb{N}} |a_j|^2 < \infty\}$.
- 16. Which of the following bilinear forms are scalar products on \mathbb{R}^n ?
 - (i) $s(x,y) := \sum_{j=1}^{n} (x_j + y_j).$
 - (ii) $s(x,y) := \sum_{j=1}^{n} \alpha_j x_j y_j, \ \alpha \in \mathbb{R}^n.$
- 17. Show that the norm in a Hilbert space satisfies ||f+g|| = ||f|| + ||g|| if and only if $f = \alpha g$, $\alpha \ge 0$, or g = 0. Hence Hilbert spaces are strictly convex.
- 18. Show that the maximum norm on C[0, 1] does not satisfy the parallelogram law.
- 19. Show that $\ell^p(\mathbb{N})$, $1 \leq p \leq \infty$, is a Hilbert space if and only if p = 2.
- 20. Suppose \mathfrak{Q} is a complex vector space. Let s(f,g) be a sesquilinear form on \mathfrak{Q} and q(f) := s(f, f) the associated quadratic form. Prove the parallelogram law

$$q(f+g) + q(f-g) = 2q(f) + 2q(g)$$

and the polarization identity

$$s(f,g) = \frac{1}{4} \left(q(f+g) - q(f-g) + i q(f-ig) - i q(f+ig) \right).$$

Show that s(f, g) is symmetric if and only if q(f) is real-valued.

Note, that if \mathfrak{Q} is a real vector space, then the parallelogram law is unchanged but the polarization identity in the form $s(f,g) = \frac{1}{4}(q(f+g) - q(f-g))$ will only hold if s(f,g) is symmetric.

- 21. Prove the claims made about f_n in Example 1.11.
- 22. Show that the integral defined in Example 1.13 satisfies

$$\int_{c}^{e} f(x)dx = \int_{c}^{d} f(x)dx + \int_{d}^{e} f(x)dx, \qquad \left|\int_{c}^{d} f(x)dx\right| \le \int_{c}^{d} |f(x)|dx.$$

How should |f| be defined here?

- 23. Show Hölder's inequality for continuous functions and conclude that $\|.\|_p$ fulfills the requirements of a norm on C(I).
- 24. Show that in a Banach space X a totally bounded set U is bounded.
- 25. Find a compact subset of $\ell^{\infty}(\mathbb{N})$ which does not satisfy (ii) from Fréchet's theorem (Theorem 1.13).
- 26. Which of the following families are relatively compact in C[0, 1]?
 - (i) $F := \{ f \in C^1[0,1] | || f ||_{\infty} \le 1 \}$
 - (ii) $F := \{ f \in C^1[0,1] | || f' ||_{\infty} \le 1 \}$
 - (iii) $F := \{ f \in C^1[0,1] | || f ||_{\infty} \le 1, || f' ||_2 \le 1 \}$
- 27. Show that two norms on X are equivalent if and only if they give rise to the same convergent sequences.
- 28. Show that a finite dimensional subspace $M \subseteq X$ of a normed space is closed.
- 29. Let X := C[0,1]. Investigate if the following operators $A : X \to X$ are linear and, if yes, compute the norm.
 - (i) $f(x) \mapsto (1-x)x f(x^2)$.
 - (ii) $f(x) \mapsto (1-x)x f(x)^2$.
 - (iii) $f(x) \mapsto \int_0^1 (1-x)y f(y) dy.$
- 30. Let X := C[0,1]. Show that $\ell(f) := \int_0^1 f(x) dx$ is a linear functional. Compute its norm. Is the norm attained? What if we replace X by $X_0 := \{f \in C[0,1] | f(0) = 0\}$ (in particular, check that this is a closed subspace)?
- 31. Let X := C[0, 1]. Investigate the operator $A : X \to X$, $f(x) \mapsto x f(x)$. Show that this is a bounded linear operator and compute its norm. What is the closure of $\operatorname{Ran}(A)$?

32. Show that the integral operator

$$(Kf)(x) := \int_0^1 K(x,y)f(y)dy$$

where $K(x, y) \in C([0, 1] \times [0, 1])$, defined on $\mathfrak{D}(K) := C[0, 1]$, is a bounded operator in $X := \mathcal{L}_{cont}^2(0, 1)$.

- 33. Let I be a compact interval. Show that the set of differentiable functions $C^1(I)$ becomes a Banach space if we set $||f||_{\infty,1} := \max_{x \in I} |f(x)| + \max_{x \in I} |f'(x)|$.
- 34. Show that $||AB|| \leq ||A|| ||B||$ for every $A, B \in \mathfrak{L}(X)$. Conclude that the multiplication is continuous: $A_n \to A$ and $B_n \to B$ imply $A_n B_n \to AB$.
- 35. Suppose $B \in \mathfrak{L}(X)$ with ||B|| < 1. Then $\mathbb{I} + B$ is invertible with

$$(\mathbb{I} + B)^{-1} = \sum_{n=0}^{\infty} (-1)^n B^n.$$

Consequently for $A, B \in \mathfrak{L}(X, Y), A+B$ is invertible if A is invertible and $||B|| < ||A^{-1}||^{-1}$.

36. Let

$$f(z) := \sum_{j=0}^{\infty} f_j z^j, \qquad |z| < R,$$

be a convergent power series with radius of convergence R > 0. Suppose X is a Banach space and $A \in \mathfrak{L}(X)$ is a bounded operator with $\limsup_n \|A^n\|^{1/n} < R$ (note that by $\|A^n\| \leq \|A\|^n$ the limsup is finite). Show that

$$f(A) := \sum_{j=0}^{\infty} f_j A^j$$

exists and defines a bounded linear operator. Moreover, if f and g are two such functions and $\alpha \in \mathbb{C}$, then

$$(f+g)(A) = f(A) + g(A), \quad (\alpha f)(A) = \alpha f(a), \quad (fg)(A) = f(A)g(A).$$

(Hint: Problem 1.8 from the lecture notes.)

- 37. Show that a linear map $\ell : X \to \mathbb{C}$ is continuous if and only if its kernel is closed. (Hint: If ℓ is not continuous, we can find a sequence of normalized vectors x_n with $|\ell(x_n)| \to \infty$ and a vector y with $\ell(y) = 1$.)
- 38. Let X_j , j = 1, ..., n, be Banach spaces. Then $(\bigoplus_{p,j=1}^n X_j)^* \cong \bigoplus_{q,j=1}^n X_j^*$, where $\frac{1}{p} + \frac{1}{q} = 1$.
- 39. Compute ||[e]|| in $\ell^{\infty}(\mathbb{N})/c_0(\mathbb{N})$, where e := (1, 1, 1, ...).
- 40. Let $X := \ell^p(\mathbb{N})$ and $M := \{a \in X | a_{2n} = 0\}, N := \{a \in X | n a_{2n} = a_{2n-1}\}$. Is $M \neq N$ closed?
- 41. Let ℓ be a nontrivial linear functional. Then its kernel has codimension one.

- 42. Suppose $A \in \mathfrak{L}(X, Y)$. Show that $\operatorname{Ker}(A)$ is closed. Suppose $M \subseteq \operatorname{Ker}(A)$ is a closed subspace. Show that the induced map $\tilde{A} : X/M \to Y, [x] \mapsto Ax$ is a well-defined operator satisfying $\|\tilde{A}\| = \|A\|$ and $\operatorname{Ker}(\tilde{A}) = \operatorname{Ker}(A)/M$. In particular, \tilde{A} is injective for $M = \operatorname{Ker}(A)$.
- 43. Show that if a closed subspace M of a Banach space X has finite codimension, then it can be complemented. (Hint: Start with a basis $\{[x_j]\}$ for X/M and choose a corresponding dual basis $\{\ell_k\}$ with $\ell_k([x_j]) = \delta_{j,k}$.)
- 44. Let I := [a, b] be a compact interval and consider $C^1(I)$. Which of the following is a norm? In case of a norm, is it equivalent to $\|.\|_{1,\infty}$?
 - (i) $||f'||_{\infty}$
 - (ii) $|f(a)| + ||f'||_{\infty}$
 - (iii) $\int_{a}^{b} |f(x)| dx + ||f'||_{\infty}$
- 45. Given some vectors f_1, \ldots, f_n we define their Gram determinant as

$$\Gamma(f_1,\ldots,f_n) := \det\left(\langle f_j, f_k \rangle\right)_{1 \le j,k \le n}.$$

Show that the Gram determinant is nonzero if and only if the vectors are linearly independent. Moreover, show that in this case

$$\operatorname{dist}(g,\operatorname{span}\{f_1,\ldots,f_n\})^2 = \frac{\Gamma(f_1,\ldots,f_n,g)}{\Gamma(f_1,\ldots,f_n)}$$

and

$$\Gamma(f_1, \dots, f_n) \le \prod_{j=1}^n ||f_j||^2.$$

with equality if the vectors are orthogonal. (Hint: First establish $\Gamma(f_1, \ldots, f_j + \alpha f_k, \ldots, f_n) = \Gamma(f_1, \ldots, f_n)$ for $j \neq k$ and use it to investigate how Γ changes when you apply the Gram–Schmidt procedure?)

- 46. Give an example of a nonempty closed bounded subset of a Hilbert space which does not contain an element with minimal norm. Can this happen in finite dimensions? (Hint: Look for a discrete set.)
- 47. Show that the set of vectors $\{c^n := (1, n^{-1}, n^{-2}, \dots)\}_{n=2}^{\infty}$ is total in $\ell^2(\mathbb{N})$. (Hint: Use that for any $a \in \ell^2(\mathbb{N})$ the functions $f(z) := \sum_{j \in \mathbb{N}} a_j z^{j-1}$ is holomorphic in the unit disc.)
- 48. Let I = (a, b) be some interval and consider the scalar product

$$\langle f,g \rangle := \int_a^b f(x)^* g(x) w(x) dx$$

associated with some positive weight function w(x). Let $P_j(x) = x^j + ...$ be the corresponding monic orthogonal polynomials obtained by applying the Gram-Schmidt procedure (without normalization) to the monomials:

$$\int_{a}^{b} P_{i}(x)P_{j}(x)w(x)dx = \begin{cases} \alpha_{j}^{2}, & i = j, \\ 0, & \text{otherwise.} \end{cases}$$

Let $\bar{P}_j(x) := \alpha_j^{-1} P_j(x)$ be the corresponding orthonormal polynomials and show that they satisfy the three term recurrence relation

$$a_j \bar{P}_{j+1}(x) + b_j \bar{P}_j(x) + a_{j-1} \bar{P}_{j-1}(x) = x \bar{P}_j(x),$$

or equivalently

$$P_{j+1}(x) = (x - b_j)P_j(x) - a_{j-1}^2P_{j-1}(x)$$

where

$$a_j := \int_a^b x \bar{P}_{j+1}(x) \bar{P}_j(x) w(x) dx, \qquad b_j := \int_a^b x \bar{P}_j(x)^2 w(x) dx.$$

Here we set $P_{-1}(x) = \overline{P}_{-1}(x) \equiv 0$ for notational convenience.

- 49. Consider $\mathfrak{H} := \ell^2(\mathbb{Z})$. A sequence $a \in \mathfrak{H}$ is called even if $a_j = a_{-j}$ for all $j \in \mathbb{Z}$. Show that the set of even sequences M forms a closed subspace. Compute P_M and M^{\perp} .
- 50. Let M_1 , M_2 be two subspaces of a Hilbert space \mathfrak{H} . Show that $(M_1 + M_2)^{\perp} = M_1^{\perp} \cap M_2^{\perp}$. If in addition M_1 and M_2 are closed, show that $(M_1 \cap M_2)^{\perp} = \overline{M_1^{\perp} + M_2^{\perp}}$.
- 51. Show that $\ell(a) = \sum_{j=1}^{\infty} \frac{a_j + a_{j+2}}{2^j}$ defines a bounded linear functional on $X := \ell^2(\mathbb{N})$. Compute its norm.
- 52. Suppose $P \in \mathfrak{L}(\mathfrak{H})$ satisfies

$$P^2 = P$$
 and $\langle Pf, g \rangle = \langle f, Pg \rangle$

and set $M := \operatorname{Ran}(P)$. Show

- Pf = f for $f \in M$ and M is closed,
- $\operatorname{Ker}(P) = M^{\perp}$

and conclude $P = P_M$.

- 53. Let \mathfrak{H} be a Hilbert space and K a nonempty closed convex subset. Prove that K has a unique element of minimal norm.
- 54. Let $\mathfrak{H}_1, \mathfrak{H}_2$ be Hilbert spaces and let $u \in \mathfrak{H}_1, v \in \mathfrak{H}_2$. Show that the operator

$$Af := \langle u, f \rangle v$$

is bounded and compute its norm. Compute the adjoint of A.

55. Let $\mathfrak{H}_1, \mathfrak{H}_2$ be Hilbert spaces and $A \in \mathfrak{L}(\mathfrak{H}_1, \mathfrak{H}_2)$. Prove

$$\|A\| = \sup_{\|g\|_{\mathfrak{H}_2} = \|f\|_{\mathfrak{H}_1} = 1} |\langle g, Af \rangle_{\mathfrak{H}_2}| \le C.$$

(Hint: Use $||f|| = \sup_{||g||=1} |\langle g, f \rangle|$ — compare Theorem 1.5.)

56. Let $\mathfrak{H}_1, \mathfrak{H}_2$ be Hilbert spaces and suppose $A \in \mathfrak{L}(\mathfrak{H}_1, \mathfrak{H}_2)$ has a bounded inverse $A^{-1} \in \mathfrak{L}(\mathfrak{H}_2, \mathfrak{H}_1)$. Show $(A^{-1})^* = (A^*)^{-1}$.

57. Show

$$\operatorname{Ker}(A^*) = \operatorname{Ran}(A)^{\perp}$$

- 58. Show Theorem 3.1.
- 59. Is the left shift $(a_1, a_2, a_3, \dots) \mapsto (a_2, a_3, \dots)$ compact in $\ell^2(\mathbb{N})$?
- 60. Is the operator $\frac{d}{dx} : C^k[0,1] \to C[0,1]$ compact for k = 1,2? (Hint: Problem 44 and Example 3.3 from the lecture notes.)
- 61. Find the eigenvalues and eigenfunctions of the integral operator $K \in \mathfrak{L}(\mathcal{L}_{cont}^2(0,1))$ given by

$$(Kf)(x) := \int_0^1 u(x)v(y)f(y)dy,$$

where $u, v \in C([0, 1])$ are some given continuous functions.

62. Find the eigenvalues and eigenfunctions of the integral operator $K \in \mathfrak{L}(\mathcal{L}_{cont}^2(0,1))$ given by

$$(Kf)(x) := 2 \int_0^1 (2xy - x - y + 1)f(y)dy.$$

63. Let $\mathfrak{H} := \mathcal{L}^2_{cont}(0,1)$. Show that the Volterra integral operator $K : \mathfrak{H} \to \mathfrak{H}$ defined by

$$(Kf)(x) := \int_{a}^{x} K(x, y) f(y) dy,$$

where $K(x, y) \in C([a, b] \times [a, b])$, has no eigenvalues except for 0. Show that 0 is no eigenvalue if K(x, y) is C^1 and satisfies K(x, x) > 0. Why does this not contradict Theorem 3.6? (Hint: Gronwall's inequality.)

- 64. Show that the inverse $(A-z)^{-1}$ (provided it exists and is densely defined) of a symmetric operator A is again symmetric for $z \in \mathbb{R}$. (Hint: $g \in \mathfrak{D}(R_A(z))$ if and only if g = (A-z)f for some $f \in \mathfrak{D}(A)$.)
- 65. Prove that every subset of a meager set is again meager and every superset of a fat set is fat.
- 66. Let X be a complete metric space. Prove that the complement of a meager set is dense.
- 67. Let X be a Banach space and Y, Z normed spaces. Show that a bilinear map $B: X \times Y \to Z$ is bounded, $||B(x, y)|| \leq C||x|| ||y||$, if and only if it is separately continuous with respect to both arguments. (Hint: Uniform boundedness principle.)
- 68. Show that a compact symmetric operator in an infinite-dimensional Hilbert space cannot be surjective.
- 69. Let $X := \mathbb{C}^3$ equipped with the norm $|(x, y, z)|_1 := |x| + |y| + |z|$ and $Y := \{(x, y, z) \in X | x + y = 0, z = 0\}$. Find at least two extensions of $\ell(x, y, z) := x$ from Y to X which preserve the norm. What if we take $Y := \{(x, y, z) \in X | x + y = 0\}$?

- 70. Consider X := C[0,1] and let $f_0(x) := 1 2x$. Find at least two linear functionals with norm one such that $\ell(f_0) = 1$.
- 71. Show that the extension from Corollary 4.13 is unique if X^* is strictly convex. (Hint: Problem 11.)
- 72. Let X be some normed space. Show that

$$||x|| = \sup_{\ell \in V, \, ||\ell|| = 1} |\ell(x)|,$$

where $V \subset X^*$ is some dense subspace. Show that equality is attained if $V = X^*$.

- 73. Let $c_0(\mathbb{N}) \subset \ell^{\infty}(\mathbb{N})$ be the subspace of sequences which converge to 0, and $c(\mathbb{N}) \subset \ell^{\infty}(\mathbb{N})$ the subspace of convergent sequences.
 - (i) Show that $c_0(\mathbb{N})$, $c(\mathbb{N})$ are both Banach spaces and that $c(\mathbb{N}) = \text{span}\{c_0(\mathbb{N}), e\}$, where $e := (1, 1, 1, ...) \in c(\mathbb{N})$.
 - (ii) Show that every $l \in c_0(\mathbb{N})^*$ can be written as

$$l(a) = \sum_{j \in \mathbb{N}} b_j a_j$$

with some unique $b \in \ell^1(\mathbb{N})$ which satisfies $||b||_1 = ||\ell||$.

(iii) Show that every $l \in c(\mathbb{N})^*$ can be written as

$$l(a) = \sum_{j \in \mathbb{N}} b_j a_j + b_0 \lim_{j \to \infty} a_j$$

with some $b \in \ell^1(\mathbb{N})$ which satisfies $|b_0| + ||b||_1 = ||\ell||$.

- 74. Show that if X, Y are Banach spaces and $A \in \mathfrak{L}(X, Y)$, then $\operatorname{Ran}(A)^{\perp} = \operatorname{Ker}(A')$ and $\operatorname{Ran}(A')_{\perp} = \operatorname{Ker}(A)$.
- 75. Let X be a Banach space and let $\ell_n, \ell \in X^*$. Let us write $\ell_n \stackrel{\sim}{\rightharpoonup} \ell$ provided the sequence converges pointwise, that is, $\ell_n(x) \to \ell(x)$ for all $x \in X$. Let $N \subseteq X^*$ and suppose $\ell_n \stackrel{*}{\rightharpoonup} \ell$ with $\ell_n \in N$. Show that $\ell \in (N_{\perp})^{\perp}$.
- 76. Consider the multiplication operator $A : \ell^1(\mathbb{N}) \to \ell^1(\mathbb{N})$ with $(Aa)_j := \frac{1}{j}a_j$. Show that $\operatorname{Ran}(A)$ is not closed but dense while $\operatorname{Ran}(A')$ is neither closed nor dense. In particular, show $\operatorname{Ker}(A)^{\perp} = \{0\}^{\perp} = \ell^{\infty}(\mathbb{N}) \supset \overline{\operatorname{Ran}(A')} = c_0(\mathbb{N}).$
- 77. Let X be a normed space. Suppose $\ell_n \to \ell$ in X^* and $x_n \rightharpoonup x$ in X. Prove that $\ell_n(x_n) \to \ell(x)$. Similarly, suppose s-lim $\ell_n = \ell$ and $x_n \to x$. Prove that $\ell_n(x_n) \to \ell(x)$. Does this still hold if s-lim $\ell_n = \ell$ and $x_n \rightharpoonup x$?
- 78. Let X, Y be normed spaces. Show that $x_n \rightharpoonup x$ in X implies $Ax_n \rightharpoonup Ax$ for $A \in \mathfrak{L}(X, Y)$. Conversely, show that if $x_n \to 0$ in X implies $Ax_n \rightharpoonup 0$ for a linear operator $A : X \to Y$, then $A \in \mathfrak{L}(X, Y)$.

79. Establish Lemma 4.34 in the case of weak convergence. (Hint: The formula

$$||A|| = \sup_{x \in X, \, ||x|| = 1; \, \ell \in V, \, ||\ell|| = 1} |\ell(Ax)|,$$

might be useful.)

- 80. Show that if $\{\ell_j\} \subseteq X^*$ is total in X^* for a Banach space X, then $x_n \to x$ in X if and only if x_n is bounded and $\ell_j(x_n) \to \ell_j(x)$ for all j. Show that this is wrong without the boundedness assumption. (Hint: Take e.g. $X = \ell^2(\mathbb{N})$.)
- 81. Let X be a Banach algebra. Show $\sigma(x^{-1}) = \sigma(x)^{-1}$ if $x \in X$ is invertible.
- 82. An element $x \in X$ from a Banach algebra satisfying $x^2 = x$ is called a projection. Compute the resolvent and the spectrum of a projection.
- 83. If $X := \mathfrak{L}(L^p(I))$, then every $x \in C(I)$ gives rise to a multiplication operator $M_x \in X$ defined as $M_x f := x f$. Show $r(M_x) = ||M_x|| = ||x||_{\infty}$ and $\sigma(M_x) = \operatorname{Ran}(x)$.
- 84. If $X := \mathfrak{L}(\ell^p(\mathbb{N})), 1 \leq p \leq \infty$, then every $m \in \ell^\infty(\mathbb{N})$ gives rise to a multiplication operator $M \in X$ defined as $(Ma)_n := m_n a_n$. Show $r(M) = ||M|| = ||m||_{\infty}$ and $\sigma(M) = \overline{\operatorname{Ran}(m)}$.
- 85. Let X be a C^* algebra and $x \in X$ be self-adjoint. Show that the following are equivalent:
 - (i) $\sigma(x) \subseteq [0,\infty)$.
 - (ii) x is positive.
 - (iii) $\|\lambda x\| \le \lambda$ for all $\lambda \ge \|x\|$.
 - (iv) $\|\lambda x\| \leq \lambda$ for one $\lambda \geq \|x\|$.
- 86. Let X be a C^* algebra. Show that if $x \in X$ is unitary then $\sigma(x) \subseteq \{\alpha \in \mathbb{C} | |\alpha| = 1\}.$
- 87. Let X be a C^* algebra and suppose that $x \in X$ is self-adjoint. Show that

$$\|(x-\alpha)^{-1}\| = \frac{1}{\operatorname{dist}(\alpha, \sigma(x))},$$

with the convention that $1/0 = \infty$ and that $||(x - \alpha)^{-1}|| = \infty$ if $x - \alpha$ is not invertible.

- 88. Let $X := \mathbb{N}$. Which of the following families of subsets form the open sets of a topology when augmented with the empty set and X?
 - (i) $U_n := \{j \in \mathbb{N} | j \le n\}, n \in \mathbb{N}.$
 - (ii) $U_n := \{j \in \mathbb{N} | j \ge n\}, n \in \mathbb{N}.$
 - (iii) all finite subsets of $\mathbb N.$
 - (iv) all infinite subsets of \mathbb{N} .
- 89. Show that the closure satisfies the Kuratowski closure axioms.

- 90. Let X be a topological space and let $A, A_{\alpha}, B \subset X$, where α is any index. Show:
 - (i) $A \subseteq B \Rightarrow A^{\circ} \subseteq B^{\circ}$ (ii) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$ (iii) $\left(\bigcap_{\alpha} A_{\alpha}\right)^{\circ} \subseteq \bigcap_{\alpha} (A_{\alpha})^{\circ}$ (iv) $\bigcup_{\alpha} \overline{A_{\alpha}} \subseteq \overline{\bigcup_{\alpha} A_{\alpha}}$
- 91. Let $X := \{1, 2, 3\}$ and define $c : \mathfrak{P}(X) \to \mathfrak{P}(X)$ via $c(\{1\}) = \{1\}, c(\{2\}) = \{1, 2\}, c(\{3\}) = \{2, 3\}$ and

$$c(U) = \bigcup_{x \in U} c(\{x\}), \quad U \subset X,$$

with the convention $c(\emptyset) = \emptyset$.

Which of the Kuratowski closure axioms does c satisfy? What are the closed sets according to c (i.e. the sets $U \subset X$ such that c(U) = U)? Do they give raise to a topology? If yes, do we have $\overline{U} = c(U)$ with respect to this topology?

92. Let X be a topological space and let $U \subset X$. Show that the closure and interior operators are dual in the sense that

$$X \setminus \overline{U} = (X \setminus U)^{\circ}$$
 and $X \setminus U^{\circ} = \overline{(X \setminus U)}$.

In particular, the closure is the set of all points which are not interior points of the complement. (Hint: De Morgan's laws.)

- 93. Let X be some nonempty set and define d(x, y) = 0 if x = y and d(x, y) = 1 if $x \neq y$. Show that (X, d) is a metric space. When are sequences convergent? When is X separable?
- 94. Show that in a (nonempty) Hausdorff space X singleton sets $\{x\}$ (with $x \in X$) are closed.
- 95. Let X be a metric space and denote by B(X) the set of all bounded functions $X \to \mathbb{C}$. Introduce the metric

$$d(f,g) = \sup_{x \in X} |f(x) - g(x)|, \quad f,g \in B(X).$$

Show that B(X) is complete.

96. Let X be a metric space and B(X) as in the previous problem. Consider the embedding $J: X \hookrightarrow B(X)$ defind via

$$y \mapsto J(x)(y) = d(x,y) - d(x_0,y)$$

for some fixed $x_0 \in X$. Show that this embedding is isometric. Hence $\overline{J(X)}$ is another (equivalent) completion of X.

97. Let X, Y be topological spaces and $U \subseteq X, V \subseteq Y$. Show that if $f : X \to Y$ is continuous and $\operatorname{Ran}(f) \subseteq V$, then the restriction $f : U \to V$ is continuous when U, V are equipped with the relative topology.

- 98. Let X, Y be topological spaces. Show that if $f : X \to Y$ is continuous at $x \in X$ then it is also sequential continuous at $x \in X$. Show that the converse holds if X is first countable.
- 99. Let X, Y be topological spaces and let $f: X \to Y$ be continuous. Show that $f(\overline{A}) \subseteq \overline{f(A)}$ for any $A \subset X$.
- 100. Let X be a topological space and $f: X \to \overline{\mathbb{R}}$. Let $x_0 \in X$ and let $\mathcal{B}(x_0)$ be a neighborhood base for x_0 . Define

$$\liminf_{x \to x_0} f(x) := \sup_{U \in \mathcal{B}(x_0)} \inf_U f, \qquad \limsup_{x \to x_0} f(x) := \inf_{U \in \mathcal{B}(x_0)} \sup_U f.$$

Show that both are independent of the neighborhood base and satisfy

- (i) $\liminf_{x \to x_0} (-f(x)) = -\limsup_{x \to x_0} f(x).$
- (ii) $\liminf_{x \to x_0} (\alpha f(x)) = \alpha \liminf_{x \to x_0} f(x), \ \alpha \ge 0.$
- (iii) $\liminf_{x \to x_0} (f(x) + g(x)) \ge \liminf_{x \to x_0} f(x) + \liminf_{x \to x_0} g(x).$

Moreover, show that

$$\liminf_{n \to \infty} f(x_n) \ge \liminf_{x \to x_0} f(x), \qquad \limsup_{n \to \infty} f(x_n) \le \limsup_{x \to x_0} f(x)$$

for every sequence $x_n \to x_0$ and there exists a sequence attaining equality if X is a metric space.

- 101. Let X, Y be topological spaces and $A \subseteq X$, $B \subseteq Y$. Show that $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$ and $\overline{A \times B} = \overline{A} \times \overline{B}$.
- 102. Let X, Y be topological spaces. Show that $X \times Y$ has the following properties if both X and Y have.
 - (i) Hausdorff
 - (ii) separable
 - (iii) first countable
 - (iv) second countable
- 103. Show that a subset K of a topological space X is compact if and only if it is compact with respect to the relative topology.
- 104. Consider $X := \mathbb{R}$ with the lower semicontinuity topology $\mathcal{O} := \{(a, \infty) | a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$. Show that this is indeed a topology. Show that a set $C \subset X$ is compact if and only if it has a minimum.
- 105. Show that a nonempty subset of $\mathbb R$ is connected if and only if it is an interval.
- 106. Let X be a metric space and $Y \subseteq X$. Show $\operatorname{dist}(x, Y) = \operatorname{dist}(x, \overline{Y})$. Moreover, show $x \in \overline{Y}$ if and only if $\operatorname{dist}(x, Y) = 0$.
- 107. Let X_{α} be topological spaces and let $X := \bigotimes_{\alpha \in A} X_{\alpha}$ with the product topology. Show that the product $\bigotimes_{\alpha \in A} C_{\alpha}$ of closed sets $C_{\alpha} \subseteq X_{\alpha}$ is closed.

108. Let $\{(X_j,d_j)\}_{j\in\mathbb{N}}$ be a sequence of metric spaces. Show that

$$d(x,y) := \sum_{j \in \mathbb{N}} \frac{1}{2^j} \frac{d_j(x_j, y_j)}{1 + d_j(x_j, y_j)} \quad \text{or} \quad d(x,y) := \sup_{j \in \mathbb{N}} \frac{1}{2^j} \frac{d_j(x_j, y_j)}{1 + d_j(x_j, y_j)}$$

is a metric on $X = \bigotimes_{n \in \mathbb{N}} X_n$ which generates the product topology. Show that X is complete if all X_n are.