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Note: References refer to the lecture notes.

1. Suppose
∑∞

n=1 |cn| < ∞. Show that

u(t, x) :=

∞∑
n=1

cne
−(πn)2t sin(nπx),

is continuous for (t, x) ∈ [0,∞) × [0, 1] and solves the heat equation for
(t, x) ∈ (0,∞) × [0, 1]. (Hint: Weierstrass M-test. When can you inter-
change the order of summation and differentiation?)

2. Show that |∥f∥ − ∥g∥| ≤ ∥f − g∥.

3. Let X be a Banach space. Show that the norm, vector addition, and
multiplication by scalars are continuous. That is, if fn → f , gn → g, and
αn → α, then ∥fn∥ → ∥f∥, fn + gn → f + g, and αngn → αg.

4. While ℓ1(N) is separable, it still has room for an uncountable set of linearly
independent vectors. Show this by considering vectors of the form

aα = (1, α, α2, . . . ), α ∈ (0, 1).

(Hint: Recall the Vandermonde determinant.)

5. Prove Young’s inequality

α1/pβ1/q ≤ 1

p
α+

1

q
β,

1

p
+

1

q
= 1, α, β ≥ 0.

Show that equality occurs precisely if α = β. (Hint: Take logarithms on
both sides.)

6. Show that ℓp(N), 1 ≤ p < ∞, is complete.

7. Show that ℓ∞(N) is a Banach space.

8. Is ℓ1(N) a closed subspace of ℓ∞(N) (with respect to the ∥.∥∞ norm)? If
not, what is its closure?

9. Show that ℓ∞(N) is not separable. (Hint: Consider sequences which take
only the value one and zero. How many are there? What is the distance
between two such sequences?)

10. Show that there is equality in the Hölder inequality for 1 < p < ∞ if and
only if either a = 0 or |bj |q = α|aj |p for all j ∈ N. Show that we have
equality in the triangle inequality for ℓ1(N) if and only if ajb

∗
j ≥ 0 for

all j ∈ N (here the ‘∗’ denotes complex conjugation). Show that we have
equality in the triangle inequality for ℓp(N) with 1 < p < ∞ if and only if
a = 0 or b = αa with α ≥ 0.
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11. Let X be a normed space. Show that the following conditions are equiva-
lent.

(i) If ∥x+ y∥ = ∥x∥+ ∥y∥ then y = αx for some α ≥ 0 or x = 0.

(ii) If ∥x∥ = ∥y∥ = 1 and x ̸= y then ∥λx+(1−λ)y∥ < 1 for all 0 < λ < 1.

(iii) If ∥x∥ = ∥y∥ = 1 and x ̸= y then 1
2∥x+ y∥ < 1.

(iv) The function x 7→ ∥x∥2 is strictly convex.

A norm satisfying one of them is called strictly convex.

Show that ℓp(N) is strictly convex for 1 < p < ∞ but not for p = 1,∞.

12. Show that p0 ≤ p implies ℓp0(N) ⊂ ℓp(N) and ∥a∥p ≤ ∥a∥p0
. Moreover,

show
lim
p→∞

∥a∥p = ∥a∥∞.

13. Consider X = C([−1, 1]). Which of the following subsets are subspaces of
X? If yes, are they closed?

(i) monotone functions

(ii) even functions

(iii) continuous piecewise linear functions

(iv) {f ∈ C([−1, 1])|f(c) = f0} for some fixed c ∈ [−1, 1] and f0 ∈ R

14. Let I be a compact interval. Show that the set Y := {f ∈ C(I,R)|f(x) >
0} is open in X := C(I,R). Compute its closure.

15. Compute the closure of the following subsets of ℓ1(N): (i) B1 := {a ∈
ℓ1(N)|

∑
j∈N |aj |2 ≤ 1}. (ii) B∞ := {a ∈ ℓ1(N)|

∑
j∈N |aj |2 < ∞}.

16. Which of the following bilinear forms are scalar products on Rn?

(i) s(x, y) :=
∑n

j=1(xj + yj).

(ii) s(x, y) :=
∑n

j=1 αjxjyj , α ∈ Rn.

17. Show that the norm in a Hilbert space satisfies ∥f +g∥ = ∥f∥+∥g∥ if and
only if f = αg, α ≥ 0, or g = 0. Hence Hilbert spaces are strictly convex.

18. Show that the maximum norm on C[0, 1] does not satisfy the parallelogram
law.

19. Show that ℓp(N), 1 ≤ p ≤ ∞, is a Hilbert space if and only if p = 2.

20. Suppose Q is a complex vector space. Let s(f, g) be a sesquilinear form
on Q and q(f) := s(f, f) the associated quadratic form. Prove the paral-
lelogram law

q(f + g) + q(f − g) = 2q(f) + 2q(g)

and the polarization identity

s(f, g) =
1

4
(q(f + g)− q(f − g) + i q(f − ig)− i q(f + ig)) .
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Show that s(f, g) is symmetric if and only if q(f) is real-valued.

Note, that if Q is a real vector space, then the parallelogram law is un-
changed but the polarization identity in the form s(f, g) = 1

4 (q(f + g) −
q(f − g)) will only hold if s(f, g) is symmetric.

21. Prove the claims made about fn in Example 1.11.

22. Show that the integral defined in Example 1.13 satisfies∫ e

c

f(x)dx =

∫ d

c

f(x)dx+

∫ e

d

f(x)dx,

∣∣∣∣∣
∫ d

c

f(x)dx

∣∣∣∣∣ ≤
∫ d

c

|f(x)|dx.

How should |f | be defined here?

23. Show Hölder’s inequality for continuous functions and conclude that ∥.∥p
fulfills the requirements of a norm on C(I).

24. Show that in a Banach space X a totally bounded set U is bounded.

25. Find a compact subset of ℓ∞(N) which does not satisfy (ii) from Fréchet’s
theorem (Theorem 1.13).

26. Which of the following families are relatively compact in C[0, 1]?

(i) F := {f ∈ C1[0, 1]| ∥f∥∞ ≤ 1}
(ii) F := {f ∈ C1[0, 1]| ∥f ′∥∞ ≤ 1}
(iii) F := {f ∈ C1[0, 1]| ∥f∥∞ ≤ 1, ∥f ′∥2 ≤ 1}

27. Show that two norms on X are equivalent if and only if they give rise to
the same convergent sequences.

28. Show that a finite dimensional subspace M ⊆ X of a normed space is
closed.

29. Let X := C[0, 1]. Investigate if the following operators A : X → X are
linear and, if yes, compute the norm.

(i) f(x) 7→ (1− x)x f(x2).

(ii) f(x) 7→ (1− x)x f(x)2.

(iii) f(x) 7→
∫ 1

0
(1− x)y f(y)dy.

30. Let X := C[0, 1]. Show that ℓ(f) :=
∫ 1

0
f(x)dx is a linear functional.

Compute its norm. Is the norm attained? What if we replace X by
X0 := {f ∈ C[0, 1]|f(0) = 0} (in particular, check that this is a closed
subspace)?

31. Let X := C[0, 1]. Investigate the operator A : X → X, f(x) 7→ x f(x).
Show that this is a bounded linear operator and compute its norm. What
is the closure of Ran(A)?
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32. Show that the integral operator

(Kf)(x) :=

∫ 1

0

K(x, y)f(y)dy,

where K(x, y) ∈ C([0, 1]× [0, 1]), defined on D(K) := C[0, 1], is a bounded
operator in X := L2

cont(0, 1).

33. Let I be a compact interval. Show that the set of differentiable func-
tions C1(I) becomes a Banach space if we set ∥f∥∞,1 := maxx∈I |f(x)|+
maxx∈I |f ′(x)|.

34. Show that ∥AB∥ ≤ ∥A∥∥B∥ for every A,B ∈ L(X). Conclude that the
multiplication is continuous: An → A and Bn → B imply AnBn → AB.

35. Suppose B ∈ L(X) with ∥B∥ < 1. Then I+B is invertible with

(I+B)−1 =

∞∑
n=0

(−1)nBn.

Consequently for A,B ∈ L(X,Y ), A+B is invertible if A is invertible and
∥B∥ < ∥A−1∥−1.

36. Let

f(z) :=

∞∑
j=0

fjz
j , |z| < R,

be a convergent power series with radius of convergence R > 0. Sup-
pose X is a Banach space and A ∈ L(X) is a bounded operator with
lim supn ∥An∥1/n < R (note that by ∥An∥ ≤ ∥A∥n the limsup is finite).
Show that

f(A) :=

∞∑
j=0

fjA
j

exists and defines a bounded linear operator. Moreover, if f and g are two
such functions and α ∈ C, then

(f + g)(A) = f(A) + g(A), (αf)(A) = αf(a), (f g)(A) = f(A)g(A).

(Hint: Problem 1.8 from the lecture notes.)

37. Show that a linear map ℓ : X → C is continuous if and only if its kernel is
closed. (Hint: If ℓ is not continuous, we can find a sequence of normalized
vectors xn with |ℓ(xn)| → ∞ and a vector y with ℓ(y) = 1.)

38. LetXj , j = 1, . . . , n, be Banach spaces. Then (
⊕n

p,j=1 Xj)
∗ ∼=

⊕n
q,j=1 X

∗
j ,

where 1
p + 1

q = 1.

39. Compute ∥[e]∥ in ℓ∞(N)/c0(N), where e := (1, 1, 1, . . . ).

40. Let X := ℓp(N) and M := {a ∈ X|a2n = 0}, N := {a ∈ X|na2n = a2n−1}.
Is M ∔N closed?

41. Let ℓ be a nontrivial linear functional. Then its kernel has codimension
one.
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42. Suppose A ∈ L(X,Y ). Show that Ker(A) is closed. Suppose M ⊆ Ker(A)
is a closed subspace. Show that the induced map Ã : X/M → Y , [x] 7→ Ax
is a well-defined operator satisfying ∥Ã∥ = ∥A∥ and Ker(Ã) = Ker(A)/M .
In particular, Ã is injective for M = Ker(A).

43. Show that if a closed subspace M of a Banach space X has finite codimen-
sion, then it can be complemented. (Hint: Start with a basis {[xj ]} for
X/M and choose a corresponding dual basis {ℓk} with ℓk([xj ]) = δj,k.)

44. Let I := [a, b] be a compact interval and consider C1(I). Which of the
following is a norm? In case of a norm, is it equivalent to ∥.∥1,∞?

(i) ∥f ′∥∞
(ii) |f(a)|+ ∥f ′∥∞
(iii)

∫ b

a
|f(x)|dx+ ∥f ′∥∞

45. Given some vectors f1, . . . , fn we define their Gram determinant as

Γ(f1, . . . , fn) := det (⟨fj , fk⟩)1≤j,k≤n .

Show that the Gram determinant is nonzero if and only if the vectors are
linearly independent. Moreover, show that in this case

dist(g, span{f1, . . . , fn})2 =
Γ(f1, . . . , fn, g)

Γ(f1, . . . , fn)

and

Γ(f1, . . . , fn) ≤
n∏

j=1

∥fj∥2.

with equality if the vectors are orthogonal. (Hint: First establish Γ(f1, . . . , fj+
αfk, . . . , fn) = Γ(f1, . . . , fn) for j ̸= k and use it to investigate how Γ
changes when you apply the Gram–Schmidt procedure?)

46. Give an example of a nonempty closed bounded subset of a Hilbert space
which does not contain an element with minimal norm. Can this happen
in finite dimensions? (Hint: Look for a discrete set.)

47. Show that the set of vectors {cn := (1, n−1, n−2, . . . )}∞n=2 is total in ℓ2(N).
(Hint: Use that for any a ∈ ℓ2(N) the functions f(z) :=

∑
j∈N ajz

j−1 is
holomorphic in the unit disc.)

48. Let I = (a, b) be some interval and consider the scalar product

⟨f, g⟩ :=
∫ b

a

f(x)∗g(x)w(x)dx

associated with some positive weight function w(x). Let Pj(x) = xj + . . .
be the corresponding monic orthogonal polynomials obtained by applying
the Gram–Schmidt procedure (without normalization) to the monomials:∫ b

a

Pi(x)Pj(x)w(x)dx =

{
α2
j , i = j,

0, otherwise.
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Let P̄j(x) := α−1
j Pj(x) be the corresponding orthonormal polynomials

and show that they satisfy the three term recurrence relation

ajP̄j+1(x) + bjP̄j(x) + aj−1P̄j−1(x) = xP̄j(x),

or equivalently

Pj+1(x) = (x− bj)Pj(x)− a2j−1Pj−1(x),

where

aj :=

∫ b

a

xP̄j+1(x)P̄j(x)w(x)dx, bj :=

∫ b

a

xP̄j(x)
2w(x)dx.

Here we set P−1(x) = P̄−1(x) ≡ 0 for notational convenience.

49. Consider H := ℓ2(Z). A sequence a ∈ H is called even if aj = a−j for all
j ∈ Z. Show that the set of even sequences M forms a closed subspace.
Compute PM and M⊥.

50. Let M1, M2 be two subspaces of a Hilbert space H. Show that (M1 +
M2)

⊥ = M⊥
1 ∩ M⊥

2 . If in addition M1 and M2 are closed, show that

(M1 ∩M2)
⊥ = M⊥

1 +M⊥
2 .

51. Show that ℓ(a) =
∑∞

j=1
aj+aj+2

2j defines a bounded linear functional on

X := ℓ2(N). Compute its norm.

52. Suppose P ∈ L(H) satisfies

P 2 = P and ⟨Pf, g⟩ = ⟨f, Pg⟩

and set M := Ran(P ). Show

• Pf = f for f ∈ M and M is closed,

• Ker(P ) = M⊥

and conclude P = PM .

53. Let H be a Hilbert space and K a nonempty closed convex subset. Prove
that K has a unique element of minimal norm.

54. Let H1, H2 be Hilbert spaces and let u ∈ H1, v ∈ H2. Show that the
operator

Af := ⟨u, f⟩v

is bounded and compute its norm. Compute the adjoint of A.

55. Let H1, H2 be Hilbert spaces and A ∈ L(H1,H2). Prove

∥A∥ = sup
∥g∥H2

=∥f∥H1
=1

|⟨g,Af⟩H2
| ≤ C.

(Hint: Use ∥f∥ = sup∥g∥=1 |⟨g, f⟩| — compare Theorem 1.5.)

56. Let H1, H2 be Hilbert spaces and suppose A ∈ L(H1,H2) has a bounded
inverse A−1 ∈ L(H2,H1). Show (A−1)∗ = (A∗)−1.
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57. Show
Ker(A∗) = Ran(A)⊥.

58. Show Theorem 3.1.

59. Is the left shift (a1, a2, a3, . . . ) 7→ (a2, a3, . . . ) compact in ℓ2(N)?

60. Is the operator d
dx : Ck[0, 1] → C[0, 1] compact for k = 1, 2? (Hint:

Problem 44 and Example 3.3 from the lecture notes.)

61. Find the eigenvalues and eigenfunctions of the integral operator K ∈
L(L2

cont(0, 1)) given by

(Kf)(x) :=

∫ 1

0

u(x)v(y)f(y)dy,

where u, v ∈ C([0, 1]) are some given continuous functions.

62. Find the eigenvalues and eigenfunctions of the integral operator K ∈
L(L2

cont(0, 1)) given by

(Kf)(x) := 2

∫ 1

0

(2xy − x− y + 1)f(y)dy.

63. Let H := L2
cont(0, 1). Show that the Volterra integral operator K : H → H

defined by

(Kf)(x) :=

∫ x

a

K(x, y)f(y)dy,

where K(x, y) ∈ C([a, b] × [a, b]), has no eigenvalues except for 0. Show
that 0 is no eigenvalue if K(x, y) is C1 and satisfies K(x, x) > 0. Why
does this not contradict Theorem 3.6? (Hint: Gronwall’s inequality.)

64. Show that the inverse (A−z)−1 (provided it exists and is densely defined)
of a symmetric operator A is again symmetric for z ∈ R. (Hint: g ∈
D(RA(z)) if and only if g = (A− z)f for some f ∈ D(A).)

65. Prove that every subset of a meager set is again meager and every superset
of a fat set is fat.

66. Let X be a complete metric space. Prove that the complement of a meager
set is dense.

67. Let X be a Banach space and Y,Z normed spaces. Show that a bilinear
map B : X × Y → Z is bounded, ∥B(x, y)∥ ≤ C∥x∥∥y∥, if and only if it
is separately continuous with respect to both arguments. (Hint: Uniform
boundedness principle.)

68. Show that a compact symmetric operator in an infinite-dimensional Hilbert
space cannot be surjective.

69. Let X := C3 equipped with the norm |(x, y, z)|1 := |x| + |y| + |z| and
Y := {(x, y, z) ∈ X|x + y = 0, z = 0}. Find at least two extensions of
ℓ(x, y, z) := x from Y to X which preserve the norm. What if we take
Y := {(x, y, z) ∈ X|x+ y = 0}?
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70. Consider X := C[0, 1] and let f0(x) := 1 − 2x. Find at least two linear
functionals with norm one such that ℓ(f0) = 1.

71. Show that the extension from Corollary 4.13 is unique if X∗ is strictly
convex. (Hint: Problem 11.)

72. Let X be some normed space. Show that

∥x∥ = sup
ℓ∈V, ∥ℓ∥=1

|ℓ(x)|,

where V ⊂ X∗ is some dense subspace. Show that equality is attained if
V = X∗.

73. Let c0(N) ⊂ ℓ∞(N) be the subspace of sequences which converge to 0, and
c(N) ⊂ ℓ∞(N) the subspace of convergent sequences.

(i) Show that c0(N), c(N) are both Banach spaces and that c(N) =
span{c0(N), e}, where e := (1, 1, 1, . . . ) ∈ c(N).

(ii) Show that every l ∈ c0(N)∗ can be written as

l(a) =
∑
j∈N

bjaj

with some unique b ∈ ℓ1(N) which satisfies ∥b∥1 = ∥ℓ∥.
(iii) Show that every l ∈ c(N)∗ can be written as

l(a) =
∑
j∈N

bjaj + b0 lim
j→∞

aj

with some b ∈ ℓ1(N) which satisfies |b0|+ ∥b∥1 = ∥ℓ∥.

74. Show that if X,Y are Banach spaces and A ∈ L(X,Y ), then Ran(A)⊥ =
Ker(A′) and Ran(A′)⊥ = Ker(A).

75. Let X be a Banach space and let ℓn, ℓ ∈ X∗. Let us write ℓn
∗
⇀ ℓ provided

the sequence converges pointwise, that is, ℓn(x) → ℓ(x) for all x ∈ X. Let

N ⊆ X∗ and suppose ℓn
∗
⇀ ℓ with ℓn ∈ N . Show that ℓ ∈ (N⊥)

⊥.

76. Consider the multiplication operator A : ℓ1(N) → ℓ1(N) with (Aa)j :=
1
j aj . Show that Ran(A) is not closed but dense while Ran(A′) is nei-

ther closed nor dense. In particular, show Ker(A)⊥ = {0}⊥ = ℓ∞(N) ⊃
Ran(A′) = c0(N).

77. Let X be a normed space. Suppose ℓn → ℓ in X∗ and xn ⇀ x in X. Prove
that ℓn(xn) → ℓ(x). Similarly, suppose s-lim ℓn = ℓ and xn → x. Prove
that ℓn(xn) → ℓ(x). Does this still hold if s-lim ℓn = ℓ and xn ⇀ x?

78. Let X, Y be normed spaces. Show that xn ⇀ x in X implies Axn ⇀ Ax
for A ∈ L(X,Y ). Conversely, show that if xn → 0 in X implies Axn ⇀ 0
for a linear operator A : X → Y , then A ∈ L(X,Y ).
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79. Establish Lemma 4.34 in the case of weak convergence. (Hint: The formula

∥A∥ = sup
x∈X, ∥x∥=1; ℓ∈V, ∥ℓ∥=1

|ℓ(Ax)|,

might be useful.)

80. Show that if {ℓj} ⊆ X∗ is total in X∗ for a Banach space X, then xn ⇀ x
in X if and only if xn is bounded and ℓj(xn) → ℓj(x) for all j. Show
that this is wrong without the boundedness assumption. (Hint: Take e.g.
X = ℓ2(N).)

81. Let X be a Banach algebra. Show σ(x−1) = σ(x)−1 if x ∈ X is invertible.

82. An element x ∈ X from a Banach algebra satisfying x2 = x is called a
projection. Compute the resolvent and the spectrum of a projection.

83. If X := L(Lp(I)), then every x ∈ C(I) gives rise to a multiplication
operator Mx ∈ X defined as Mxf := x f . Show r(Mx) = ∥Mx∥ = ∥x∥∞
and σ(Mx) = Ran(x).

84. If X := L(ℓp(N)), 1 ≤ p ≤ ∞, then every m ∈ ℓ∞(N) gives rise to
a multiplication operator M ∈ X defined as (Ma)n := mnan. Show
r(M) = ∥M∥ = ∥m∥∞ and σ(M) = Ran(m).

85. Let X be a C∗ algebra and x ∈ X be self-adjoint. Show that the following
are equivalent:

(i) σ(x) ⊆ [0,∞).

(ii) x is positive.

(iii) ∥λ− x∥ ≤ λ for all λ ≥ ∥x∥.
(iv) ∥λ− x∥ ≤ λ for one λ ≥ ∥x∥.

86. Let X be a C∗ algebra. Show that if x ∈ X is unitary then σ(x) ⊆ {α ∈
C||α| = 1}.

87. Let X be a C∗ algebra and suppose that x ∈ X is self-adjoint. Show that

∥(x− α)−1∥ =
1

dist(α, σ(x))
,

with the convention that 1/0 = ∞ and that ∥(x− α)−1∥ = ∞ if x− α is
not invertible.

88. Let X := N. Which of the following families of subsets form the open sets
of a topology when augmented with the empty set and X?

(i) Un := {j ∈ N|j ≤ n}, n ∈ N.
(ii) Un := {j ∈ N|j ≥ n}, n ∈ N.
(iii) all finite subsets of N.
(iv) all infinite subsets of N.

89. Show that the closure satisfies the Kuratowski closure axioms.
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90. Let X be a topological space and let A,Aα, B ⊂ X, where α is any index.
Show:

(i) A ⊆ B ⇒ A◦ ⊆ B◦

(ii) A ⊆ B ⇒ A ⊆ B

(iii)
(⋂

α Aα

)◦ ⊆
⋂

α(Aα)
◦

(iv)
⋃

α Aα ⊆
⋃

α Aα

91. LetX := {1, 2, 3} and define c : P(X) → P(X) via c({1}) = {1}, c({2}) =
{1, 2}, c({3}) = {2, 3} and

c(U) =
⋃
x∈U

c({x}), U ⊂ X,

with the convention c(∅) = ∅.
Which of the Kuratowski closure axioms does c satisfy? What are the
closed sets according to c (i.e. the sets U ⊂ X such that c(U) = U)? Do
they give raise to a topology? If yes, do we have U = c(U) with respect
to this topology?

92. Let X be a topological space and let U ⊂ X. Show that the closure and
interior operators are dual in the sense that

X \ U = (X \ U)◦ and X \ U◦ = (X \ U).

In particular, the closure is the set of all points which are not interior
points of the complement. (Hint: De Morgan’s laws.)

93. Let X be some nonempty set and define d(x, y) = 0 if x = y and d(x, y) =
1 if x ̸= y. Show that (X, d) is a metric space. When are sequences
convergent? When is X separable?

94. Show that in a (nonempty) Hausdorff space X singleton sets {x} (with
x ∈ X) are closed.

95. Let X be a metric space and denote by B(X) the set of all bounded
functions X → C. Introduce the metric

d(f, g) = sup
x∈X

|f(x)− g(x)|, f, g ∈ B(X).

Show that B(X) is complete.

96. Let X be a metric space and B(X) as in the previous problem. Consider
the embedding J : X ↪→ B(X) defind via

y 7→ J(x)(y) = d(x, y)− d(x0, y)

for some fixed x0 ∈ X. Show that this embedding is isometric. Hence
J(X) is another (equivalent) completion of X.

97. Let X, Y be topological spaces and U ⊆ X, V ⊆ Y . Show that if f :
X → Y is continuous and Ran(f) ⊆ V , then the restriction f : U → V is
continuous when U , V are equipped with the relative topology.
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98. Let X, Y be topological spaces. Show that if f : X → Y is continuous
at x ∈ X then it is also sequential continuous at x ∈ X. Show that the
converse holds if X is first countable.

99. Let X, Y be topological spaces and let f : X → Y be continuous. Show
that f(A) ⊆ f(A) for any A ⊂ X.

100. Let X be a topological space and f : X → R. Let x0 ∈ X and let B(x0)
be a neighborhood base for x0. Define

lim inf
x→x0

f(x) := sup
U∈B(x0)

inf
U

f, lim sup
x→x0

f(x) := inf
U∈B(x0)

sup
U

f.

Show that both are independent of the neighborhood base and satisfy

(i) lim infx→x0(−f(x)) = − lim supx→x0
f(x).

(ii) lim infx→x0(αf(x)) = α lim infx→x0 f(x), α ≥ 0.

(iii) lim infx→x0(f(x) + g(x)) ≥ lim infx→x0 f(x) + lim infx→x0 g(x).

Moreover, show that

lim inf
n→∞

f(xn) ≥ lim inf
x→x0

f(x), lim sup
n→∞

f(xn) ≤ lim sup
x→x0

f(x)

for every sequence xn → x0 and there exists a sequence attaining equality
if X is a metric space.

101. Let X, Y be topological spaces and A ⊆ X, B ⊆ Y . Show that (A×B)◦ =
A◦ ×B◦ and A×B = A×B.

102. Let X, Y be topological spaces. Show that X × Y has the following
properties if both X and Y have.

(i) Hausdorff

(ii) separable

(iii) first countable

(iv) second countable

103. Show that a subset K of a topological space X is compact if and only if
it is compact with respect to the relative topology.

104. Consider X := R with the lower semicontinuity topology O := {(a,∞)|a ∈
R} ∪ {∅,R}. Show that this is indeed a topology. Show that a set C ⊂ X
is compact if and only if it has a minimum.

105. Show that a nonempty subset of R is connected if and only if it is an
interval.

106. Let X be a metric space and Y ⊆ X. Show dist(x, Y ) = dist(x, Y ).
Moreover, show x ∈ Y if and only if dist(x, Y ) = 0.

107. Let Xα be topological spaces and let X :=
�

α∈A Xα with the product
topology. Show that the product

�
α∈A Cα of closed sets Cα ⊆ Xα is

closed.
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108. Let {(Xj , dj)}j∈N be a sequence of metric spaces. Show that

d(x, y) :=
∑
j∈N

1

2j
dj(xj , yj)

1 + dj(xj , yj)
or d(x, y) := sup

j∈N

1

2j
dj(xj , yj)

1 + dj(xj , yj)

is a metric on X =
�

n∈N Xn which generates the product topology. Show
that X is complete if all Xn are.


