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Abstract
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Breath gas analysis is based on the compelling concept that the exhaled breath levels of endogenously
produced volatile organic compounds (VOCs) can provide a direct, non-invasive window to the blood and
hence, by inference, to the body. In this sense, breath VOCs are regarded as a comprehensive repository of
valuable physiological and clinical information, that might be exploited in such diverse areas as diagnostics,
therapeutic monitoring or general dynamic assessments of metabolic function, pharmacodynamics (e.g., in
drug testing) and environmental exposure (e.g., in occupational health).

Despite this enormous potential, the lack of standardized breath sampling regimes as well as the poor
mechanistic understanding of VOC exhalation kinetics could cast a cloud over the widespread use of breath
gas analysis in the biomedical sciences. In this context, a primary goal of the present thesis is to provide
a better quantitative insight into the breath behavior of two prototypic VOCs, isoprene and acetone. A
compartmental modeling framework is developed and validated by virtue of real-time breath measurements
of these trace gases during distinct physiological states. In particular, the influence of various hemodynamic
and ventilatory parameters on VOC concentrations in exhaled breath is investigated. This approach also
complements previous steady state investigations in toxicology.

From a phenomenological point of view, both acetone and isoprene concentrations in end-tidal breath
are demonstrated to exhibit a reproducible non-steady state behavior during moderate workload challenges
on a stationary bicycle. However, these dynamics depart drastically from what is expected on the basis of
classical pulmonary inert gas elimination theory. More specifically, the start of exercise is accompanied by
an abrupt increase in breath isoprene levels, usually by a factor of 3 to 4 compared with the steady state
value during rest. This phase is followed by a gradual decline and the development of a new steady state
after about 15 min of pedaling. Acetone concentrations closely resemble the profile of alveolar ventilation,
resulting in slightly increased, roughly stable levels during the individual workload segments.

While for acetone the above-mentioned discrepancy can be explained by reference to gas exchange
mechanisms in the conductive airways, a major part of breath isoprene variability during exercise condi-
tions can be attributed to an increased fractional perfusion of potential storage and production sites, leading
to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, var-
ious lines of supportive evidence for an extrahepatic tissue source of isoprene are presented.

The results discussed within the framework of this thesis are a first step towards new guidelines for
the breath gas analysis of isoprene as well as acetone and are expected to have general relevance for quan-
titatively examining the exhalation, storage, transport, and biotransformation processes associated with
volatile organic compounds in vivo.

Keywords: breath gas analysis, volatile organic compounds, acetone, isoprene, modeling, proton transfer
reaction mass spectrometry, gas chromatography mass spectrometry
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Chapter 1

Introduction

1.1 Medical background and perspectives
“Physicians have diagnosed what is ailing the patient from the breath since the days of Hippocrates. The
modern era of breath testing commenced in 1971, when Nobel Prize winner Linus Pauling demonstrated
that human breath is a complex gas, containing well over 200 different volatile organic compounds in pi-
comolar concentrations.” [114]

The identification of physiological status and disease based on the composition of human breath has
a long tradition in medical practice. It dates back to the fundamental observation that certain pathogenic
processes give rise to a characteristic smell of the patient and its exhalate. Even though the nature of the
underlying disease was not always understood, such aromas allowed for the distinction between numer-
ous “evil humors”, that have nowadays been linked to specified physiological or metabolic abnormalities.
Prominent examples include the well-known fetor hepaticus (the smell of musty fish due to sulfur com-
pounds) associated with liver failure or the odor of decaying apples accompanying severe diabetes (which
has later been attributed to the excessive amounts of acetone emitted in the breath and from the skin of such
patients).

Odor Disease

Sweet, fruity (decomposing apples) Ketoacidosis (e.g., diabetes)

Fishy Uremia

Musty (raw liver) Hepatic failure

Feculent, foul Intestinal obstruction

Urine-like (ammoniacal) Uremia

Foul, putrid Lung abscess, empyema, intranasal foreign body

Sweaty feet, cheesy Isovaleric academia

Table 1.1: Summary of typical breath aromas that have been related to specific disorders [108].

While characteristic breath odors had served as diagnostic parameters since antiquity, further exploita-
tion of their full potential was naturally limited by the sensitivity of the human olfactory system1. However,
interest into this kind of patient assessment was soon renewed with the emergence of powerful novel ana-
lytical techniques during the 1950s, most notably gas chromatography combined with mass spectrometric
detection (GC–MS). These methodologies for the first time enabled the extraction of detailed information
on the chemical composition of breath, thus going beyond the main respiratory gases nitrogen (N2), oxy-
gen (O2), and carbon dioxide (CO2). In 1971, Nobel laureate Linus Pauling and co-workers demonstrated

1Note, however, that several studies have investigated the extraordinary scenting ability of other mammals in this context, e.g.,
dogs sniffing out lung and breast cancer in its early stages of development [110].

3



4 CHAPTER 1. INTRODUCTION

that human breath is a complex gas mixture, containing well over 200 different volatile organic compounds
(VOCs2) in picomolar concentrations [123, 165]. Even though Pauling could not identify these trace gases
at the time, his findings marked the beginning of a new era of breath testing. In particular, it was recognized
that volatile compounds in breath might carry valuable clinical information on the status of an individual
that is complementary to the insight gained from standard diagnostic routines (e.g., serum or urine probes,
which predominantly center on the analysis of large molecular weight, non-volatile indicators such as ions
or proteins).

With the advent of high-sensitivity analysis methods, detection and quantification procedures of VOCs
in human exhaled breath were continuously improved. This also motivated increased experimental efforts
aiming at the identification of potential breath biomarkers3. The first substantial review of the field of
breath gas analysis was published by Manolis [108]. A few years later, Preti suggested that exhaled breath
analysis could be used for the detection of lung cancer [130]. Ground-breaking work on nitric oxide NO
(produced in the lungs and the sinuses and considered to be reflective of airway inflammation) was initiated
by Gustafsson, Lundberg and Weitzberg [67, 106, 4, 107] and by Kharitonov and Barnes [87, 86] in the
1990s. During the same time, Phillips published a series of papers on exhaled breath analysis of lung cancer
patients and patients suffering from mamma carcinoma [126, 127]. Pioneering results on the production of
acetaldehyde by cancer cell cultures were described by Smith and Španěl [152]. Moreover, several groups
proposed nominal levels for a series of VOCs in normal healthy populations [143, 91, 169, 168, 170].

In recent years, several hundreds of specific compounds have been established as regular constituents of
normal human breath. Some major examples together with their tentative physiological sources are listed
in Table 1.2. Breath concentrations of these VOCs typically range from ppb (parts per billion, i.e., one
molecule in 109 particles of air) to ppm (parts per million, i.e., one molecule in 106 particles of air).

Compound Concentration Physiological / pathological source

Acetone ppm Decarboxylation of acetoacetate, diabetes

Ammonia ppm Protein metabolism, liver and renal disease

Carbon dioxide % Product of respiration, Helicobacter pylori

Carbon disulfide ppb Gut bacteria, schizophrenia

Carbon monoxide ppm Production catalyzed by heme oxygenase

Carbonyl sulphide ppb Gut bacteria, liver disease

Ethane ppb Lipid peroxidation and oxidative stress

Ethanol ppb Gut bacteria

Ethylene ppb Lipid peroxidation, oxidative stress, cancer

Hydrocarbons ppb Lipid peroxidation/metabolism

Hydrogen ppm Gut bacteria

Isoprene ppb Cholesterol biosynthesis

Methane ppm Gut bacteria

Methanethiol ppb Methionine metabolism

Methanol ppb Metabolism of fruit

Nitric oxide ppb/ppm Production catalyzed by nitric oxide synthase

Pentane ppb Lipid peroxidation, oxidative stress

Water % Product of respiration

Table 1.2: Summary of major constituents of exhaled breath together with their tentative synthetic path-
ways [111].

VOCs appearing in exhaled breath may roughly be classified into two major groups, depending on
2The definition of a VOC has not been standardized. However, a common characteristic of all such molecules is their significant

vapor pressure, thus leading to a high evaporation rate even at relatively low (e.g., ambient) temperature ranges.
3referring to compounds that might be used for detecting disease according to their (increased/decreased) appearance or lack in

breath as compared to a healthy state.
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whether their origin is primarily exogenous or endogenous. Exogenous volatile compounds penetrate the
human body mainly by ingestion, inhalation or dermal routes and thus reflect environmental exposure.
Contrarily, endogenous volatile compounds are released within the human organism (e.g., as a result of
normal metabolic activity or due to pathological disorders), may enter the blood stream and are eventually
excreted via exhalation, skin emission, urine, etc. (see also Fig. 2.1). While the discrimination between
these two groups is critical for breath gas analysis (in the sense that only endogenous compounds can
potentially qualify as biomarkers) it is not as trivial as it may seem at first glance4. Moreover, even for
VOCs that are widely regarded as endogenous, the precise sources or biochemical pathways responsible
for their formation often remain obscure. Further in vitro investigations of volatiles released from bacteria
and cell cultures will be required to bridge this gap.

The fact should be stressed that while the search for disease-specific biomarkers can be seen as the
driving force for the development of breath gas analysis as an independent area of research, breath gas ana-
lytical investigations appear to have a much broader scope than previously envisaged. Indeed, the detection
and quantification of these trace gases seems to fulfill all the demands and desires for non-invasive investi-
gations and has been put forward as a versatile tool for general biomonitoring applications. These include
therapy control as well as dynamic assessments of normal physiological function (e.g., in an intra-operative
setting, see also Section 4.3), pharmacodynamics (drug testing) or body burden in response to environmen-
tal exposure (e.g., in occupational health) [6, 7, 5, 29, 134, 113, 128, 8]. Exhaled breath can nowadays be
measured on a breath-by-breath resolution, therefore rendering breath gas analysis as an optimal choice for
gaining continuous information on the metabolic and physiological state of an individual. Furthermore, as
has been impressively demonstrated in the Nobel prize-winning work by Furchgott, Ignarro and Murad on
the small inorganic molecule nitric oxide, trace gases can themselves actively participate in the regulation
of physiological events [82, 19]. This renders VOCs as a promising tool for examining more fundamental
endogenous processes.

Summarizing, breath gas analysis holds great promise for the biomedical sciences. In particular, it
enjoys several advantages over traditional experimental and diagnostic procedures based, e.g., on blood
or urine samples or biopsies. Apart from its non-invasive nature and the obvious improvement in patient
compliance/tolerability, major hallmarks of breath testing comprise unlimited sample extraction as well as
rapid on-the-spot evaluation or even real-time analysis, cf. Section 1.2. Despite this terrific potential, only
a few breath tests have already been introduced into clinical routine, see Table 1.3.

Breath VOC Area of application

Ethanol Law enforcement

Hydrogen Carbohydrate malabsorption

Nitric oxide Asthma

Carbon monoxide Neonate jaundice
13CO2 Helicobacter pylori infection

Branched hydrocarbons Heart transplant rejection

Table 1.3: Summary of clinically employed breath tests as approved by the United States Federal Drug
Administration FDA [7].

This can mainly be traced back to the fact that multiple confounding factors may affect breath gas
analysis results, including contamination from ambient air, interference from other molecules, the sub-
ject’s cardiopulmonary status, pre-measurement exposure, tobacco use, etc. [138]. Consequently, further
methodological efforts are needed before breath analysis can become the “new blood test” . Particularly,
drawing reproducible breath samples remains an intricate task that has not been fully standardized yet.
Moreover, inherent error sources introduced by the complex mechanisms driving pulmonary gas exchange
have not been investigated in sufficient depth, cf. Section 1.3.

4Consider methanol for instance, which is a byproduct of fruit fermentation in the stomach but can also be considered as a common
constituent of laboratory air due to its widespread use as a solvent.
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1.2 Measurement principles

The renewed interest in breath analysis is also a reflection of the remarkable advances in analytical chem-
istry instrumentation. These developments have led to a continuous lowering of detection limits and have
gone hand in hand with the construction of more compact and even hand-held monitoring devices suitable
for point-of-care examinations.

From an analytical viewpoint, human breath is an extraordinarily complex matrix to measure. Quan-
titative assessments are primarily complicated by the consistency of the breath sample itself (e.g., due to
interferences with the high amount of moisture and carbon dioxide), but also by fact that the involved
VOCs cover an extremely wide spectrum of distinct physico-chemical properties (ranging, e.g., from the
diatomic, inorganic and low-soluble molecule nitric oxide to polyatomic, highly soluble structures such as
alcohols and ketones). Consequently, the range of measurement techniques employed for breath gas analyt-
ical investigations is extremely diverse and each method comes with its specific strengths and weaknesses.
Key technologies in this context include gas chromatography with mass spectrometric detection (GC–MS),
proton transfer reaction mass spectrometry (PTR–MS), selected ion flow tube mass spectrometry (SIFT–
MS), ion mobility spectrometry, ion mobility reaction mass spectrometry, laser absorption spectrometry
and photoacoustic spectrometry. Additionally, several electrochemical, optical or semiconductor sensors
may be used. Recent overviews of the available methods can be found in [31, 7]. In this thesis, focus will
be given to GC–MS and PTR–MS.

Traditionally, breath gas analysis has its roots in GC–MS measurements. Extensive background mate-
rial on this technique is provided in [63, 66]. Briefly, the decisive feature of GC–MS is that the individual
components of a complex gas mixture are pre-separated by means of a chromatographic column. The in-
terior of the latter is coated with active material (the so-called stationary phase, usually consisting of a
microscopic layer of polymers such as polydimethylsiloxane), designed to interact with the sample such
that different components elute from the column at different times. For fixed analysis conditions this re-
tention time is a compound-specific parameter that can be used for substance identification. Subsequently,
the eluted VOCs undergo ionization and the resulting cracking patterns are determined by virtue of con-
ventional mass spectrometry. These mass spectra can then be compared to spectral libraries of known
compounds, hence providing further means for confirming the previous identification step. Quantification
of identified trace gases may be achieved by comparison with measurements of standard samples, involv-
ing known concentrations of pure compounds. GC–MS is widely regarded as gold standard for breath
gas analysis. However, a major drawback is that time-intensive preconcentration steps are mandatory with
this technique (due to the typically small total amounts of VOCs present in the sample), thus precluding
its use in real-time evaluations of VOC behavior in exhaled breath. Moreover, GC–MS measurements are
usually carried out by collecting and storing the breath sample in some container (e.g., Tedlar bags) prior
to analysis. This intermediate step is a rather error-prone task, especially with respect to potential losses or
contaminations.

Contrarily, during the last 15 years fascinating mass spectrometric techniques have been developed that
permit the measurement of exhaled breath with breath-by-breath resolution, i.e., on a time-scale of less
than 0.5 s [5]:

• proton transfer reaction mass spectrometry (PTR–MS) by Werner Lindinger, Tilmann Märk, and
Armin Hansel at the Institute of Ion Physics in Innsbruck [97, 98],

• selected ion flow tube mass spectrometry (SIFT–MS) by David Smith and Patrik Španěl at Keele
University and the Heyrovsky Institute of Physical Chemistry in Prague [151, 150], and

• Xenon/Krypton charge transfer mass spectrometry (marketed under the name Airsense) by Johannes
Villinger in the company V&F (Absam near Innsbruck) [75].

In particular, these techniques avoid the above-mentioned issues by “directly breathing into the analytical
device”. A typical picture of this situation is shown in Chapter 8, Fig. 2. The fact is stressed that these
devices generally act like a specific sensor for a selected ensemble of previously identified substances.
In other words, the above mass spectrometers are primarily intended for monitoring applications rather
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than identification purposes5. On the other hand, their real-time capability can be viewed as an essential
requirement for relating changes in breath VOC concentrations to quick variations in hemodynamic or
respiratory flow, cf. Section 1.3.

For an extensive overview of PTR–MS methodology the interested reader is referred to [97, 98, 24].
In brief, this analytical technique has proven to be a sensitive method for the quantification of volatile
molecular species M on the basis of “soft” chemical ionization within a drift chamber6. More specifically,
it takes advantage of the proton transfer

H3O+ + M→ MH+ + H2O

from primary hydronium precursor (reagent) ions originating in an adjoint hollow cathode. Specifically,
this reaction scheme is selective to VOCs with proton affinities higher than water (166.5 kcal/mol), thereby
avoiding the ionization of the bulk composition exhaled air, N2, O2 and CO2. Count rates of the resulting
product ions MH+ or fragments thereof appearing at specified mass-to-charge ratiosm/z can subsequently
be converted into absolute concentrations of the protonated compounds. Further details on quantification
can be found in [142] .

Even though sufficiently accurate and fast instrumental techniques are vital for exhaled breath analy-
sis, further methodological issues have to be addressed. Specifically, the breath sampling step itself has
emerged as a crucial factor for reliable breath analysis. In fact, different breathing patterns or collection
regimes can make a dramatic difference to the measured VOC concentrations of interest, thus promoting
the establishment of unified sampling guidelines [35, 6]. A prototypic example is the implementation of
standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide [1].

While similar guidelines for the sampling of other trace gases would be desirable, in everyday mea-
surement practice breath is simply collected in an end-tidal manner. This means that the first part of the
exhalation – corresponding to the gas volume filling the anatomical dead space and hence not participat-
ing in gas exchange according to classical pulmonary inert gas elimination theory – is discarded and only
the last exhalation segment (reflecting “alveolar air”) is kept for analysis. In more sophisticated sampling
systems, end-tidal extraction is triggered by virtue of simultaneously measured CO2- and/or flow-data
[72, 23], see also Chapter 5. While such setups are an important contribution to current standardization
efforts in breath sampling, they are far from being perfect. Specifically, these sampling systems can not
account for the variability of breath VOC concentrations stemming from varying physiological conditions.

1.3 Quantitative modeling in breath gas analysis

As has already been indicated in the previous section, a fundamental yet underestimated aspect of breath
gas analysis concerns the blood-gas kinetics of the VOCs under scrutiny. With active research predomi-
nantly focusing on the explorative search for potential biomarkers, it is sometimes argued that “. . . from
the perspective of point-of-care clinical practice, empirical methods for pattern recognition are sufficient
to make a valid diagnosis and . . . knowledge of the specific biochemical pathways may not be necessary7.”
This appears to be an acceptable standpoint if future breath tests can eventually be reduced to binary out-
comes, in the sense that the detection/rejection of a disease can be based solely on the appearance or
complete lack of specific substances in breath. However, the applicability of such a yes-no scheme is
highly unlikely and recent results indicate that the discrimination between diseased and healthy states will
mainly hinge on concentration differences. In such cases, a thorough physiological understanding of the
underlying blood-gas kinetics becomes imperative.

To illustrate this point, consider the population study result in Fig. 1.1 (cf. [15]), which may suggest
the detection of lung cancer patients on the basis of decreased isoprene levels in end-tidal breath.

5Note, however, that high-end PTR–MS devices based on time-of-flight mass spectrometry enable the separation of isobaric
molecules, thus providing a mass resolution that might be sufficient for compound identification [32].

6Here, “soft” refers to the fact that no pronounced fragmentation of the nascent product ions occurs.
7M. Phillips, PittCon 2010, cf. [129]
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Figure 1.1: Overlay depicting the variability of end-tidal isoprene concentrations during hyperventilation
of one single volunteer as compared to the population boxplots associated with healthy test subjects and
lung cancer patients.

Effectively, from the respective boxplots a tentative discriminatory value of about 70 ppb might be
established. Note, however, that from a procedural point of view this observation will be of limited use,
since any further attempt to classify a specific individual will strongly depend on the hemodynamic and
respiratory status of the test subject investigated. Correspondingly, by measuring end-tidal isoprene levels
with breath-by-breath resolution (e.g., using PTR–MS), it can be demonstrated that a normal healthy male
volunteer at rest might easily switch between the two groups above merely by changing his breathing pat-
tern (for example by breathing faster or with an increased tidal volume). Doing so leads to an instantaneous
drop of breath isoprene levels and might thus provoke a misclassification of this volunteer. Consequently,
any screening study results like the one above must be complemented by information on their variability
with changes of ventilation or blood flow.

The above line of argumentation nicely demonstrates some of the pitfalls that can be encountered when
overlooking the impact of physiological parameters on the interpretation of breath gas analysis results.
It also emphasizes the fact that the knowledge of a potential biomarker VOC is simply not enough: in
order to make breath tests operational, a detailed insight into the diverse physiological factors affecting
the breath levels of such compounds will be required [138]. Much can be learnt in this context from the
cumbersome development of the nitric oxide breath test, which nowadays ranges among the most widely
reported exploitations of breath gas analysis within a clinical setting [6]. This paradigmatic example shows
that good quantitative assessment of the underlying exhalation kinetics is mandatory when aiming at the
successful introduction of a clinically applicable breath test.

The general assumption is that VOCs present in end-tidal air evolve from the blood and that their con-
centrations in the exhalate (gaseous phase) are representative of the respective blood concentrations. In
classical pulmonary inert gas elimination theory this relationship is captured by the so-called Farhi equa-
tion [50] (see also Chapter 5 for a derivation), predicting a direct proportionality between the alveolar
concentration CA of a VOC (presumed to be accessible from end-tidal exhalation segments as described
before) and its concentration Cv̄ in mixed venous blood. Here, the associated proportionality factor de-
pends on the substance-specific blood:gas partition coefficient λb:air (describing the diffusion equilibrium
in the respiratory microvasculature, cf. Section 2.3), alveolar ventilation V̇A (governing the transport of the
compound through the respiratory tree), and cardiac output Q̇c (controlling the rate at which the VOC is
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delivered to the lungs), viz.,

Cmeasured = CA =
Cv̄

λb:air + V̇A

Q̇c

. (1.1)

The Farhi equation offers a first simplified description of mass balance principles in the lungs and can
be seen as a starting point for the present thesis. More specifically, a natural question to ask is whether
the previous relationship can be expected to have general relevance for a reasonably wide range of volatile
compounds as well as experimental scenarios. In this context, the fact is stressed that the Farhi equation
is essentially a steady state concept that might not be suited for explaining non-steady state behavior, e.g.,
in response to relatively quick physiological changes (for instance during exercise). Correspondingly, a
major objective of this work will be to critically review and possibly extend classical pulmonary inert gas
elimination theory by examining the exhalation dynamics of two highly abundant, endogenous trace gases
found in human breath:

• isoprene, which is low-soluble in blood (as reflected by a small blood:gas partition coefficient λb:air ≈
0.75), lipophilic and presumed to be correlated with cholesterol synthesis [159] and

• acetone, which has a high affinity for blood (λb:air ≈ 340), has been linked to fat catabolism and
might serve as biomarker for diabetic disorders [83].

From the above, both isoprene and acetone can be viewed as prototypic examples for the analysis of two
major classes of VOCs, even though they cannot cover the whole spectrum of different physico-chemical
properties. Furthermore, these two compounds rank among the most notable VOCs studied in the context
of breath gas analysis and thus represent paradigmatic choices for a more detailed assessment of observable
trace gas behavior in exhaled breath.

In summary, while breath gas analysis would greatly profit from a more causal understanding of VOC
kinetics in response to distinct physiological states, the development of quantitative formulations relating
breath concentrations to the underlying systemic levels clearly lags behind the enormous analytical progress
in the field. This situation calls for the establishment of a proper modeling framework, striving for validated
mechanistic descriptions of VOC dynamics in different parts of the organism. As an outlook, from an
operational point of view such modeling studies can

1. help to identify potential confounding factors affecting the interpretation of breath test results and
propose corrective measures.

2. guide the ongoing standardization of sampling procedures and provide formal means for evaluating
the information content of newly proposed experimental settings.

3. enhance the fundamental understanding of the physiological role of VOCs, e.g., by relating phe-
nomenological features of observable breath concentration profiles to specific distribution, transport,
biotransformation and excretion processes of these substances.

4. stimulate biochemical investigations exploring the endogenous (e.g., cellular) sources of VOCs

The last two points are directed towards further consolidating the potential role of breath gas analysis in
biomonitoring applications and can be seen as a chief motivation for this thesis.

1.4 Outline of the thesis and overview of the contributions
The present dissertation is arranged in three parts. While the last two parts contain articles published in
scientific journals, the first one is introductory.
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Part I is intended to familiarize the reader with some basic physical and mathematical tools that have
proven useful for quantitative descriptions of VOC kinetics. The direct problem of physiological model
building will be discussed and several powerful concepts from inverse problem methodology will be re-
viewed in a roughly self-contained manner. The latter primarily comprise methods for parameter estimation
in dynamic systems (both on an off-line and on-line basis) and will be employed in Part III for extracting
unknown model quantities from measured breath data. Furthermore, in order to demonstrate the viability of
these approaches at hand of a real-world application, a novel monitoring scheme for the volatile anesthetic
sevoflurane during general inhalation anesthesia will be developed.

Part II is devoted to experimental techniques for acquiring VOC concentration profiles and comprises
the two manuscripts “Isoprene and acetone concentration profiles during exercise on an ergometer” (Pa-
per A), and “Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled
PTR-MS/GC-MS study” (Paper B), published in the Journal of Breath Research and Physiological Mea-
surement, respectively. In the first article an experimental setup efficiently combining real-time PTR–MS
trace gas measurements with data streams reflecting hemodynamic and respiratory parameters is devel-
oped. This setup then serves to illuminate the evolution of breath isoprene and acetone (and other VOCs)
in conjunction with decisive physiological factors during rest and ergometer challenges. Such synchronized
profiles represent a indispensable phenomenological basis pertinent to the present modeling approach. As a
key feature, the aforementioned instrumentation introduces an innovative algorithm for automatic, selective
breath-by-breath sampling of arbitrary exhalation segments based on volumetric flow data. In the second
paper, a methodology for complementing PTR–MS measurements with independent GC–MS analyses is
discussed. Such a simultaneous sample acquisition allows for a rigorous cross-validation of the experimen-
tal findings reported in Paper A. Moreover, it also aims at placing isoprene and acetone measurements in a
broader context by comparing their non-steady state behavior with the profiles of VOCs expected to show
similar exhalation kinetics.

These experimental efforts culminate in Part III, which is dedicated to novel quantitative descriptions
of the physiological flow of isoprene and acetone in the human body. It contains the two articles “Phys-
iological modeling of isoprene dynamics in exhaled breath” (Paper C), and “A mathematical model for
breath gas analysis of volatile organic compounds with special emphasis on acetone” (Paper D), which
have been published in the Journal of Theoretical Biology and the Journal of Mathematical Biology, re-
spectively. Additionally, in the preprint “A modeling based evaluation of isothermal rebreathing for breath
gas analysis of highly soluble volatile organic compounds” (Paper E), isothermal rebreathing will be in-
vestigated as an interesting experimental framework for corroborating the physical appropriateness and
assessing the predictive power of the proposed acetone description. The presented models are derived in
direct agreement with the respective breath behavior during distinct experimental scenarios (mainly exer-
cise), thus demonstrating that dynamic patterns of breath VOCs reflect fundamental physiological changes
that can potentially be used for exploring the fate of volatile molecular species in the human body. This
rationale also opens up a new framework for non-invasively estimating substance-specific parameters from
observable breath data, including quantities that would otherwise be difficult to access such as endogenous
production/metabolization rates or kinetic rate constants for the exchange between air, blood, and different
tissue compartments of the body. In this sense, the above contributions complement previous steady-state
investigations in toxicology and are a first step towards new guidelines for reliable breath gas analyses of
isoprene and acetone.

The fact is stressed that both the experimental and the modeling part are treated with equal attention.
This allows for a continuous re-evaluation of the proposed models by means of suitably designed and newly
adapted experimental regimes and may be considered as a particular achievement of the present work.

As first author of all articles compiled in this thesis I took a leading role in all stages of the publishing
process, while greatly benefiting from the specific expertise of my co-authors. In particular, my contribu-
tions to Part II comprise the design and realization of the experimental setup, data gathering, formulation
of the phenomenological results and the preparation of the manuscripts. The GC–MS measurements were
carried out by P. Mochalski. In Part III, I was responsible for the development of the mathematical models,
their numerical implementation as well as their experimental validation. Moreover, I drafted the corre-
sponding manuscripts.
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Mathematical tools for VOC modeling
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Chapter 2

Modeling principles for VOC kinetics

Contents
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The following sections briefly summarize the fundamental physical and methodological principles un-
derlying the derivation of physiologically based models capturing the distribution of molecular trace gases
(which will henceforth be denoted by M ) within the human body. General discussion largely follows
standard expositions on thermodynamics and biological mass transport, see [2, 167] for instance. Specific
interpretations with respect to respiratory physiology are indicated where appropriate.

Remark 1. While a good grasp of elementary respiratory and cardiovascular physiology is essential for
reading the papers in Part II and Part III, a detailed treatment of these topics would be beyond the scope of
the present thesis. For a compact overview of some fundamental concepts the interested reader is referred
to the excellent textbooks by West [179] as well as Mohrman and Heller [115]. A comprehensive modeling
approach to cardiopulmonary physiology can be found in [166].

2.1 The ideal gas law
A gas consists of free molecules in a state of random motion. These molecules fill any container in which
they are enclosed. By colliding with one another and with the walls of the container a pressure is exerted.
This situation is captured by the ideal gas law,

PV = nRT, (2.1)

where P denotes pressure, V is the volume occupied, n is the amount of gas in moles, and T is the abso-
lute temperature1. In respiratory physiology, P is often measured in kilopascals (kPa) (or mmHg), V in
liters (l), and T in Kelvin (K). The constant R = 8.314 l · kPa · mol−1 · K−1 is called the universal gas
constant.

The ideal gas law can be seen as a combination of three empirical gas laws. Firstly, it states that if tem-
perature is kept constant, increasing/decreasing the pressure of the gas will decrease/increase the volume
occupied (Boyle-Mariotte law). Also, at a constant volume, the pressure exerted by a gas is proportional
to the absolute temperature (Gay-Lussac’s law). Finally, under constant external conditions with regard to
pressure and temperature, equal volumina of different ideal gases contain the same number of molecules

1Alternatively one may write PV = NkT , where N is the number of particles and k is Boltzmann’s constant.

13
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(Avogadro’s law). In particular, under ambient conditions (P = 101 kPa and T = 298 K) one mole of an
ideal gas occupies a volume of approximately 24.5 l.

Gases obeying the ideal gas law are referred to as ideal gases. Note, however, that the concept of
an ideal gas is merely an idealized model, valid only within certain pressure and temperature ranges de-
pending on the specific gas under scrutiny. Loosely spoken, it applies whenever the gas molecules can be
considered as isolated points in space, having negligible volumes and exerting no intermolecular forces
other than those resulting from perfectly elastic collisions between the molecules. As these conditions are
usually fulfilled at the low pressures encountered in respiratory physiology, virtually all volatile compounds
M considered in the present framework can be regarded as ideal gases2.

Equation (2.1) holds true for mixtures of ideal gases as well. Specifically, for an ensemble of m gas
species we may write

PV = (n1 + ...+ nm)RT, (2.2)

where P is the total pressure exerted by the gas mixture. Motivated by the previous relation, we may define
the partial pressure Pi of the ith gas as

Pi =
niRT

V
. (2.3)

It is the pressure that would be exerted by the gas species i alone, that is, if all other gas components were
removed and if it occupied the entire volume of the container by itself. Relations (2.2) and (2.3) imply that
the total pressure P of a gas mixture is equal to the sum of the partial pressures of its components, viz.,

P = P1 + P2 + ....+ Pm. (2.4)

This relation is called Dalton’s law, stating that each gas exerts a pressure that is independent of the
pressures of the other gases in the mixture. We may hence treat each component individually.

2.2 Diffusion and Henry’s law
Fick’s first law of diffusion states that the net flux J quantifying diffusional transport of a gas species M
between two spatially homogeneous control volumes A and A′ is proportional to the associated difference
in partial pressure, i.e.,

J = kdiff(PM,A − PM,A′), (2.5)

where the non-negative diffusion constant kdiff has dimensions of amount (in mol) divided by pressure and
time. If the gas under scrutiny is in dissolved state rather than in gas phase, PM is referred to as gas tension,
defined as the partial pressure that would be exerted by the gas above the liquid if both were in equilibrium
(e.g., oxygen tension in blood). In the following we will omit the subscript M . Equation (2.5) can also be
expressed via a difference in concentrations. We will distinguish the following three cases:

(i). Firstly, if A as well as A′ represent a gaseous medium and M can be treated as an ideal gas then –
by the ideal gas law – its partial pressure PA may be written as

PA = CART, (2.6)

and analogously for PA′ . Here, CA := nA/VA is defined as the molecular concentration of M . Hence,

J = kdiff(CART − CA′RT ) = k̃diff(CA − CA′), (2.7)

where k̃diff is defined by the above equation.

2For perspective, according to the van der Waals equations of state the true molar volume of acetone at the above-mentioned
ambient conditions is about 23.98 l (cf. [96]), suggesting that the derivation from the “ideal” mole volume is negligible.
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(ii). Similarly, if bothA andA′ are liquids, we can make use of Henry’s law stating that the amount of a
gas M that can dissolve in a liquid under equilibrium conditions 3 is directly proportional to the respective
tension, viz.,

C = HP. (2.8)

Here the solute- and solvent-specific Henry constant H = H(T ) is inversely related to temperature. Sub-
stituting the last expression into Equation (2.5) yields

J = kdiff

(
CA
HA
− CA′

HA′

)
. (2.9)

(iii). Finally, let us assume thatA′ represents a liquid, whileA is a gas volume. The prototypic example
for this situation in the present context is the blood-gas interface, separating the respiratory microvascula-
ture from the alveoli. In this case, by combining (2.6) and (2.8) we arrive at

J = kdiffRT

(
CA − CA′

HA′RT

)
= k̃diff

(
CA − CA′

HA′RT

)
. (2.10)

In case of a diffusion equilibrium, i.e., if J = 0, we deduce from Equation (2.9) that

CA′

CA
=
HA′

HA
=: λA′:A, (2.11)

where the positive dimensionless quantity λA′:A is the so-called partition coefficient between A′ and A
(e.g., λblood:fat). Analogously, its reciprocal value is denoted by λA:A′ .

Similarly, from (2.10) the ratio between the liquid phase concentration and gas phase concentration of
M in equilibrium is given by

CA′

CA
= HA′RT. (2.12)

The expression HA′RT again represents a partition coefficient denoted by λA′:A (e.g., λblood:air) and is
a measure of the solubility of the gas M in the solvent A′. Hence, λA′:A allows to classify M as low or
highly soluble with respect to A′. In respiratory physiology HA′RT is also termed the Ostwald solubility
coefficient.

Remark 2. Henry’s law (2.8) exclusively refers to the physically dissolved gas molecules, i.e., it is only
valid for gases that do not form chemical combinations with some component of the solvent (e.g., blood).
Such gases are called inert gases. While in the context of VOC modeling most volatile compounds M
will fall into this category, some important exceptions in the field of respiratory physiology include oxygen
(O2), carbon dioxide (CO2) and carbon monoxide (CO). When carried in blood, due to a number of
reactions (primarily with hemoglobin and water) the physically dissolved fraction of these gases is small
compared to the chemically bound amount. Accordingly, the relation (2.8) must be replaced by more
complicated dissociation functions.

2.3 A primer on compartmental mass transport
The development of mechanistic descriptions for biological and physiological processes is complex for
several reasons [132]. Firstly, unlike in other fields such as physics and engineering, quantitative relation-
ships between biological and physiological variables are often formulated on an empirical or heuristic basis
rather than being derived from first principles. Moreover, in the former domains the system components are
usually known a priori (consider the ensemble of electrical elements comprising an electronic circuit for
instance) and one might hence predict all the important features of the system as a whole. On the contrary,
when it comes to modeling in vivo phenomena associated with, e.g., human physiology and biochemistry, a

3When a gas and a liquid are at an (dynamic) equilibrium, the number of molecules escaping the liquid statistically equals the
number of molecules dissolving in it.
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delicate preliminary task consists in identifying the basic mechanisms affecting an experimentally observed
behavior.

The issues raised above are inherent to quantitative assessments of VOC dynamics in the human body.
Nevertheless, like any physical system, these dynamics have to respect a set of fundamental laws that can
be employed for guiding the modeling process. An elementary but particularly useful tool in this context
is the concept of mass balance, coupled with a compartmental model design. A quite general formal
definition of a compartment has been given in [18] as follows: if a substance M is present in a system
in several distinguishable forms or locations and if M passes from one form or location to another form
or location at a measurable rate, then each form or location constitutes a separate compartment for M .
Similarly, a compartment might be seen as any discrete, functional unit of the investigated system in which
M can reasonably be postulated to behave uniformly. We shall refer to a compartment model as a set
of compartments interacting by exchanging material. In graphical representations, the compartments are
usually depicted as boxes, while an exchange mechanism between two compartments is indicated by a
directed arrow.

Within a physiological framework, the compartmental approach to mass transfer traditionally consists
in dividing the body into an ensemble of roughly homogeneous anatomic structures or tissue control vol-
umes that are interconnected via the arterial and venous network [131, 94, 9, 62, 54]. This yields a simpli-
fied representation of the human organism, reflecting known or hypothesized physiology and biochemistry.
A typical example is shown in Fig. 2.1.
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Figure 2.1: Physiologically based compartment model for the distribution of an endogenous volatile or-
ganic compound M within the human body. Green items indicate known or measured variables according
to the experimental setup, while production, metabolism, storage, and depletion rates represent (unknown)
quantities that are expected to affect the tissue distribution of M .

As has been indicated above, the number and configuration of the compartments defining such a physi-
ological model is seldom fixed a priori. In fact, the level of detail included will primarily be determined by
the physico-chemical characteristics of M , the (qualitative) features of experimental evidence as well as
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the anticipated use of the model. Consequently, a compromise must be achieved between a model structure
that is sufficiently accurate and yet simple enough to allow for a tractable and physiologically plausible pa-
rameterization. In this sense, the goal is to maintain a compartmentalization as parsimonious as possible.
Typical reasons for including a specific organ or tissue group A individually rather than incorporating it
into a lumped compartment might comprise [131]:

1. Biotransformation or uptake/clearance processes are expected to occur within A.

2. A is an integral part of the experimental question/setup or is affected by the experimental regime.

3. Measurements capturing the behavior of M in A are available.

Since their introduction by Teorell in the 1930s [163, 164], compartment models have received widespread
attention in the biomedical sciences. The reason for this popularity is that the model structures bear a di-
rect correspondence with the underlying physiology, thereby maintaining a clear-cut interpretation of the
involved parameters. Moreover, once a specific compartmentalization has been selected, one can straight-
forwardly arrive at a set of model equations by writing down the associated mass balance relations.

For the sake of illustration, consider two homogeneous compartments A and A′ with volumes VA and
VA′ , respectively. Both compartments interact by diffusion and are affected by additional input rates İ and
effluent output rates Ȯ, cf. Fig. 2.2. Here, the terms İ and Ȯ typically represent possible sources (e.g.,
production and uptake) or sinks (metabolism and clearance/excretion), respectively.

C VA A,

C VA‘ A‘

,

J

OA

.
IA

.

IA‘

.
OA‘

.

Figure 2.2: A simple two-compartment model. Both compartments A and A′ interact by diffusion and are
affected by additional input rates İ and effluent output rates Ȯ.

Progression of matter inA andA′ is governed by conservation of mass, stating that the rate at which the
compartmental amount (viz., VACA) of M changes per time unit equals the rate of mass transfer into the
compartment less the rate of removal from the compartment. Accordingly, assuming that the corresponding
compartment volumes remain constant over time, the mass balances for the above system read

d
(
VACA

)
dt

= VA
dCA
dt

= −J + İA − ȮA (2.13)

and
d
(
VA′CA′

)
dt

= VA′
dCA′

dt
= J + İA′ − ȮA′ , (2.14)

respectively. Hence, the convenience of compartmental modeling stems from the fact that the underlying
model structure can directly be expressed as a set of ordinary differential equations (ODEs). In particular,
the resulting ODE systems share a wide range of interesting properties with respect to their qualitative
behavior, see [80, 11].

Note that the assumption of well-mixing is central to compartmentalization and can often only be jus-
tified heuristically, either by examining factors that contribute to rapid distribution (e.g., convection) or
by considering small volumes. If heterogeneity within a compartment is expected to be substantial or the
main focus is on the spatial distribution of M (e.g., for predicting the concentration of a volatile drug M
at specific locations within a target site), general mass transport equations leading to PDEs have to be em-
ployed [167].
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A crucial aspect of diffusional mass transfer of volatile organic compounds M within various body
tissues is the distinction between diffusion-limited and perfusion-limited gas exchange [147]. In order to
clarify these notions consider Equations (2.13) and (2.14) again. Perfusion limitation essentially charac-
terizes the situation in which diffusion is “fast” compared to the other dynamics influencing the system.
Consequently, CA as well as CA′ will instantaneously approach their steady state values and a perma-
nent diffusion equilibrium can be assumed to hold between A and A′. In this case we may replace CA′
in (2.14) with CAλA′:A (cf. Equation (2.11)) and deduce that the ODE system above simplifies to the
one-dimensional differential equation(

VA′λA′:A + VA
)dCA

dt
= İA′ − ȮA′ + İA − ȮA. (2.15)

The factor ṼA := (VA′λA′:A + VA) can be seen as effective volume of the combined compartment. It is
important to note that according to Equation (2.15) the amount of gas transferred from A to A′ and vice
versa solely depends on the amount presented via the respective inflows.

Example 1. There is strong evidence that in normal healthy persons the alveolar exchange of inert gases
is a perfusion-limited process. The branching capillary network of the respiratory microvasculature will
generally promote a fast equilibration between end-capillary blood A′ and the free gas phase A. This
is likely to hold true also under moderate, sub-anaerobic exercise conditions [173]. From a modeling
perspective, a commonly encountered error in this context is to neglect the contribution of VA′λA′:A to the
effective alveolar volume, as the end-capillary blood volume VA′ ≈ 0.15 l is argued to be much smaller
than the normal lung volume VA ≈ 3 l. Note, however, that this is only acceptable for low soluble inert
gases with blood:air partition coefficient close to 1.

Contrarily, if the diffusional flux is small, i.e., if J regulates the amount of gas exchanged between
A and A′, mass transfer is said to be diffusion-limited. Typical factors contributing to the development
of a diffusion limitation include the separation of both regions by some physical barrier (hindering the
passage of M from A to A′ and vice versa) as well as insufficient residence times within the respective
compartments (e.g., due to a high convective flow).

Example 2. A paradigmatic example for an effective diffusion limitation is the brain-blood barrier, where
the tight junctions of the capillary endothelium restrict the diffusional mass transfer between the vascular
space and the cerebral interstitium. As far as pulmonary gas exchange is concerned, oxygen uptake is
usually perfusion-limited under normal conditions. However, a diffusion limitation can commonly be ob-
served during heavy exercise [174] (due to reduced pulmonary capillary red cell transit times) or pulmonary
fibrosis [3] (due to a thickening of the blood-gas barrier).

From (2.15) and Example 1 it should be evident that a particular convenience of postulating perfusion-
limited gas exchange stems from the possibility of lumping together various physical sub-compartments
into one single functional entity (e.g., end-capillary blood and the alveolar gas space are combined to form
the lung compartment). This can drastically reduce the number of parameters required for setting up the
model equations. However, it generally is the modeler’s responsibility to decide whether a diffusion- or
perfusion-limitation is a more appropriate description of the underlying physiological situation.

Example 3. As a general guidance, for tissue groups exerting a high degree of vascularization the intracel-
lular space A can be assumed to rapidly equilibrate with the extracellular space A′ (including the vascular
blood and the interstitial space). In other words, gas exchange from the vascular blood to the cellular space
will be perfusion-limited rather than diffusion-limited (see, however, Example 2 for an important excep-
tion). In this case, a venous equilibrium is said to hold, i.e., the concentration CA′ of M in blood leaving
the tissue group is related to the actual tissue concentration CA via Equation (2.11).

While physiological realism represents a particular strength of the compartmental modeling approach,
it also is one of its most severe drawbacks. The reason for this is that the developed models necessarily
require extensive physiological, physico-chemical and biochemical information, which has to be obtained
via calculated values from the literature or by direct experimentation. Depending on the specific exper-
imental question and/or setup under scrutiny, the spectrum of model parameters can roughly be divided
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into fixed, measured and unknown quantities (see also Fig. 2.1). In the present context, the first class typ-
ically comprises quantities that have been determined a priori and are assumed to remain constant during
the course of experimentation, such as approximate tissue volumes or partition coefficients. Information
of this type has been compiled by several investigators, see, e.g., [131] and references therein. Measured
parameters include quantities that are accessible by virtue of the given experimental setup, while unknown
parameters will have to be extracted by fitting the model to available experimental data.

Summarizing, we may conclude that the canonical structure for deterministic models representing an
ensemble of mass balance kinetics are ODE systems of the form

ẋ(t) = g(x(t),u(t),ϑ), x(t0) = x0. (2.16)

These equations describe the evolution of a state variable x(t), belonging to an open setX ⊆ Rn, within an
observation interval [t0, tmax]. The right-hand side g depends on a set of measured, time-varying variables
u ∈ U ⊆ Rq that are postulated to be uniformly bounded over [t0, tmax] as well as on a vector ϑ ∈ Θ ⊆ Rp
lumping together a set of constant, unknown model parameters. The latter will have to be estimated from
available process data (possibly together with some components the initial conditions x0). In the present
context of VOC modeling, x typically reflects molecular concentrations of the trace gas M within the
tissue compartments introduced; u stands for external inputs (flows, temperature, etc.) that can be modified
by experimentation; ϑ includes kinetic constants such as endogenous production or metabolization rates.
Furthermore, information on the model dynamics can be collected via the scalar measurement equation

y(t) = h(x(t),ϑ), (2.17)

reflecting the underlying experimental setup. Specific examples for the framework introduced above can
be found in Part III.

In the following we assume that g and h are continuously differentiable with respect to ϑ and x.
Moreover, it will be a general premise underpinning further discussion that the direct modeling problem
is well-posed, i.e., that the system formed by (2.16) and (2.17) gives rise to unique solutions that depend
continuously on x0 and ϑ. By virtue of the Theorem of Picard-Lindelöf (see [14] for instance), such a
property can be confirmed by checking that g is uniformly Lipschitz with respect to x ∈ X (e.g., by prov-
ing uniform boundedness of the Jacobian dg/dx).
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Chapter 3

Off-line identification
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Once a presumed model structure has been selected, we will strive to achieve (quantitative) congru-
ency of the model behavior with the observable features of the experimental system. This is typically
accomplished by trying to identify and estimate a series of relevant parameter values affecting the model
output. From a slightly different perspective, as modeling attempts are often aimed at inferring process
characteristics from measured data, the determination of these unknown parameters may become a major
investigative goal by itself. In the following chapters several methodological aspects regarding parameter
estimation in physiological models will be reviewed. In particular, these techniques underpin the model
fitting procedures indicated in Part III. For extensive methodological overviews of this vast field of research
the interested reader is referred to [176, 21].

3.1 A priori identifiability
Often over-looked, assessing the a priori (or structural) identifiability/observability of a given model is a
necessary step that should precede any numerical approach to parameter estimation. The objective is to
clarify whether in the ideal context of an error-free (i.e., “correct”) model and noise-free measurements
there exist functions u (or, in other words, conductible experiments) such that the associated output y (the
observable data) carries enough information to allow for an unambiguous determination of all unknown
states and parameters. Particularly, this avoids an inherent over-parameterization of the model.

As the time evolution of the system (2.16) for a given u is fixed once the initial conditions x0 at the
start of the experiment are known, the analysis of a priori identifiability/observability hence amounts to
studying (local) injectivity of y with respect to x0 and ϑ. Evidently, if such a property does not hold then
any attempt to reliably estimate these quantities is doomed to failure from the start, as several different
parameter combinations might yield exactly the same data.

Remark 3. Since the unknown parameters ϑ can be interpreted as additional states with time derivative
zero, it will be sufficient to confirm the injectivity of y with respect to a (possibly augmented) vector of
initial conditions x0.
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Several concepts for tackling the structural identifiability/observability problem as introduced above
have been developed in the literature. Most of these have their roots in nonlinear control theory and hinge
on widely distinct methodological backgrounds including differential algebra [103, 109], similarity trans-
formations [171] and field extensions [145, 41]. A good account of various earlier techniques can be found
in [175]. Here, will adopt a differential-geometric approach [73] which – despite its simplicity and local
nature – proves to be a flexible tool for capturing the essence of a priori observability for most nonlinear
models considered within the present framework.

In the following, we focus on the case where the inputs u are constant and hence can be interpreted as
additional parameters of the system

ẋ = g(x), x(t0) = x0,

y = h(x).
(Σ)

Here, it is assumed that g : X → Rn as well as h : X → R are real analytic functions. The output
y = y(t,x0) is viewed as a function of the initial condition x0. Systems of the form (Σ) are a valid de-
scription for many biological processes under constant measurement conditions and represent a sufficient
framework for the type of models and experiments considered in this thesis. Results in the sequel are
mainly collected from [73, 120, 154] and [13]. These references also provide extensive details with respect
to questions of a priori observability in a more general setting than the one above.

Intuitively, as has been indicated before, local observability reflects the fact that x0 can be instanta-
neously distinguished from any of its neighbors by using the system response. This is made explicit in the
following definition.

Definition 1. Let U ⊆ X . Two initial conditions x0, x̃0 ∈ U are U -indistinguishable (x0 ∼U x̃0) if for
every T > 0 such that the corresponding trajectories remain in U it holds that

y(t,x0) = y(t, x̃0)

for all t ∈ [0, T ]. A system (Σ) is called locally observable at x0 ∈ X , if there exists a neighborhood
U ⊆ X of x0 such that for all points x̃0 in U the relation x0 ∼U x̃0 implies that x0 = x̃0.

In other words, local observability characterizes the fact that x0 7→ y(.,x0) is injective for arbitrarily
small T .

For the sake of illustration, consider the systemẋ1

ẋ2

ẋ3

 =

−(x2 + x3)x1

0
0

 , y = x1, (3.1)

then
y = x1,0 exp(−(x2,0 + x3,0)t).

Evidently, this toy model is not locally observable as the slightly perturbed initial conditions x̃2,0 :=
x2,0 + ε and x̃3,0 := x3,0 − ε result in exactly the same response y for any ε > 0. If we interpret x1 and
x2 as constant parameters, the above situation corresponds to a typical case of over-parameterization, i.e.,
adding x3 does not provide a more detailed description of the observable output. On the other hand, from
the reversed viewpoint of estimation, this means that we will never be able to simultaneously estimate both
x2,0 and x3,0 from the available process data but can only assess their sum. An equivalent characterization
of this fact can be given in the context of sensitivities, i.e., by considering the partial derivatives of the
output with respect to the parameters. Indeed, we immediately see that

∂y

∂x2,0
=

∂y

∂x3,0
,
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i.e., the sensitivities are linearly dependent, which is well-known to preclude a joint estimation of both
parameters, see [34, 79]. Intuitively, the reason for this is that from the the Taylor expansion of first order

y(x̃2,0, x̃3,0) ≈ y(x2,0, x3,0) +
∂y

∂x2,0
ε− ∂y

∂x3,0
ε = y(x2,0, x3,0),

which again confirms that any small change in x2,0 can be compensated for by an appropriate change in
x3,0 to yield almost the same output. A rigorous statement of this fact in the general unconstrained case is
given in [21]. In contrast, as will be illustrated henceforth, local observability guarantees linear indepen-
dence of the derivatives of y with respect to x0. This also is a necessary requirement for the broad class
of numerical parameter estimation schemes based on the minimization of a given cost functional using
first-order information, cf. Section 3.2.

In more complex models, where an analytical expression for y can usually not be derived, we have
to resort to differential-geometric methods for investigating local observability. These tools will only be
developed to the extent necessary for stating the final observability criterion, but are usually defined in a
much more general framework than the one presented here.
For this purpose, first note that using the chain rule, the time derivative of the output equals the Lie deriva-
tive Lgh of the output function h with respect to the vector field g, i.e.,

ẏ = (∇h) · g =: Lgh

which again is analytic. Here, ∇ = ( ∂
∂x1

, . . . , ∂
∂xn

) denotes the gradient and · denotes the scalar product
in Rn. Similarly, by iteratively defining

L(k)
g h = LgL

(k−1)
g h, L(0)

g h := h,

we immediately see that

y(k)(x0) :=
∂k

∂tk
y(t,x0)

∣∣∣
t=0

= L(k)
g h(x0).

By our analyticity assumption on the system (Σ), the system response y is analytic with respect to both t
and x0 and can hence be represented by a convergent power (Lie) series around t = 0:

y(t,x0) =
∞∑
k=0

tk

k!
y(k)(x0) =

∞∑
k=0

tk

k!
L(k)

g h(x0). (3.2)

As a result, the relation x0 ∼U x̃0 is characterized by the fact that for all k ≥ 0 it holds that

L(k)
g h(x0) = L(k)

g h(x̃0).

This motivates the following definition

Definition 2. The linear space over R of all iterated Lie derivatives

O(x0) := spanR{L(k)
g h(x0), k ≥ 0},

is called the observation space of the model. Moreover, ∇O := {∇H, H ∈ O} denotes the associated
observability co-distribution.

The following criterion [73] now yields a sufficient condition for local observability.

Theorem 3.1. The model (Σ) is locally observable at x0 if

dim∇O(x0) = n. (3.3)
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Proof. The proof is merely an application of the Inverse Function Theorem. Accordingly, if the above
condition holds, then we can choose n functions Hk ∈ O such that the map H := (H1, . . . ,Hn)T has a
non-singular Jacobian at x0. Hence, there exists a neighborhood W of x0 such that H : W → H(W ) is
a diffeomorphism. Now, choose an open subset U ⊆ W with x0, x̃0 ∈ U and y(t,x0) = y(t, x̃0) in U .
From the series expansion (3.2) we thus deduce that

L(k)
g h(x0) = L(k)

g h(x̃0)

for all k ≥ 0. This shows that H(x0) = H(x̃0) and by injectivity of H we hence find that x0 = x̃0,
thereby concluding the proof.

Conversely, the following result can be derived [120, p. 97].

Corollary 1. Assume that the system (Σ) is locally observable. Then dim∇O(x) = n for x in an open
and dense subset of X .

Hence, if (Σ) is locally observable, the criterion in Theorem 3.1 will be fulfilled generically. This is
further discussed below.

Note that condition (3.3) is equivalent to finding n indices kj such that the gradients ∇L(kj)
g h(x0) are

linearly independent. In fact, it turns out that only the first n iterated Lie derivatives have to be computed
in order to decide if such indices exist [13].

Lemma 1. (Rank criterion for local observability) Condition (3.3) is equivalent to the algebraic rank
criterion

rank J(x) := rank
(
∇L(0)

g h(x0)T , . . . ,∇L(n−1)
g h(x0)T

)
= n. (3.4)

Proof. To show this we have to introduce the Lie derivative of a row vector of analytic functions f =
(f1(x), . . . , fn(x)) (a co-vector field), which is again a co-vector field defined by

Lgf := gTJTf + fJg,

where J is the Jacobian. Note that Lg is linear with respect to f . Furthermore, for the special case f = ∇h,
from the component-wise argument

(∇Lgh)j =
n∑
l=1

gl
∂h

∂xl∂xj
+

n∑
l=1

(∇h)l
∂gl
∂xj

= (Lg∇h)j ,

we deduce that∇ and Lg commute. Now, assume that for αj ∈ R

∇L(k)
g h(x0) =

k−1∑
j=0

αj∇L(j)
g h(x0),

i.e.,∇L(k)
g h(x0) is linearly dependent on the (k − 1) previously calculated gradients. Then,

∇L(k+1)
g h(x0) = ∇(LgL

(k)
g h) = Lg(∇L(k)

g h) =
k−1∑
j=0

αj∇L(j+1)
g h(x0) =

k−1∑
j=0

(αk−1αj + αj−1)∇L(j)
g h(x0),

(we set α−1 := 0 for notational simplicity) which again is a linear combination of the first (k−1) gradients.
Hence, either ∇L(k)

g h(x0), k = 0, . . . , n − 1, are linearly independent and the model is locally ob-
servable at x0 or dim∇O(x0) < n.



3.1. A PRIORI IDENTIFIABILITY 25

Remark 4. Note that for a linear system

ẋ = Ax,

y = Cx

the above condition simplifies to

rank
(
CT , ATCT , . . . , A(n−1)TCT

)
= n,

which is the well-known criterion introduced by Kalman (see, e.g., [154]). Obviously, if the linear model
is locally observable at one particular initial condition, local observability holds for every other initial
condition as well.

To conclude this section some words are in order regarding the practical implementation of Lemma 1.
For this purpose, let us assume for the moment that g and h belong to the field of rational functions in
x = (x1, . . . , xn) and u = (u1, . . . , uq) over R, i.e., g, h ∈ R(x,u) with no real poles inX . Consequently,
the entries of the matrix J(x,u) defined in (3.4) belong to R(x,u) and hence its rank can be defined as the
maximum size of a submatrix whose determinant is a non-zero rational function. This so-called generic
rank can easily be determined by symbolic calculation software. Hence, if the generic rank of J is n, the
rank of J(x,u) evaluated at one specific point (x,u) ∈ Rn+q will also be n except for certain singular
choices that are algebraically dependent over R. As these special points constitute a set of measure zero,
we may thus claim that if the generic rank of J(x,u) equals n, almost every experiment corresponding to
a choice of constant input variables u will suffice to immediately distinguish a particular unknown initial
condition x0 from its neighbors by giving rise to a distinct system output y. Conversely, if the generic
rank of J(x,u) is smaller than n, from Corollary 1 it may be concluded that the system (Σ) is not locally
observable in the sense of Definition 1. This indicates a potential over-parameterization of the model.

The above results are strengthened further by applying the Universal Input Theorem for analytic sys-
tems due to Sussmann [161], ensuring that if a pair of unknown initial conditions can be distinguished by
some (e.g., constant) input, it can also be distinguished by almost every input belonging to C∞([0, T ]), T >
0 (see also [178] for a rigorous statement as well as a self-contained proof). Note, that in the context of
physiological models this is the appropriate class of functions for capturing a wide range of applicable
physiological conditions. The following Mathematica code summarizes the findings of the last paragraph
and can be used for checking the a priori identifiability of a given rational model (Σ) in practical situations.

Algorithm 1 (Rank criterion for local observability)

Consider the model (Σ) with g and h ( 6= const.) rational and analytic on the state space X ⊆ Rn. Then
condition (3.4) can be verified as follows.

J = {D[h, {{x1,...,xn}}]}; r = 1;
While[r < n,
newRow = D[J[[r]].g, {{x1,...,xn}}];
(* iterated Lie derivatives *)
J = Append[J, newRow];
If[MatrixRank[J] == r,
Print[Rank criterion not fulfilled.]; Break[];,
r = r + 1];

];

Remark 5. Note that the above line of argumentation remains valid also for general analytic functions g
and h. However, the generic rank in this case usually has to be estimated, e.g., by computing the rank of J
evaluated at some randomly assigned points (x,u) ∈ Rn+q .

While from the above an affirmative outcome of the rank test guarantees that every initial condition
within a neighborhood of the “true” value x0 will yield a distinct output y when conducting a generic ex-
periment with smooth inputs, the effective reconstruction of x0 from partially observed and error-corrupted
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data remains a challenging problem. For instance, despite a positive result of the rank criterion, nothing
can be said about the degree of linear independence between the derivatives of the output with respect to
the initial conditions. In fact, the associated sensitivity matrix can still be rank-deficient in a numerical
sense, indicating a high correlation among some of the components to be recovered (cf. Remark 17). This
is the context of practical identifiability or estimability by means of numerical estimation schemes, which
will be discussed in the next sections.

3.2 Nonlinear least squares methodology
So far, we have focused exclusively on parameter identifiability in the ideal context of continuous and exact
measurements. In practical applications, however, process information might only be available at N + 1
discrete time instants t0 < t1 < · · · < tN = tmax and will often be corrupted by measurement noise. We
hence have access to longitudinal output data yi := h(x(ti),ϑ) + vi, which are realizations corresponding
to the additive statistical model (cf. Equation (2.17))

Yi := h(x(ti),ϑ) + Vi, i = 0, . . . , N. (3.5)

Here, the noise terms Vi are assumed to be independent and identically distributed (iid) random variables
having zero mean and constant variance, i.e., for the random vector V := (V0, . . . , VN )T it holds that
E{V} = 0 and cov{V} = β2I . The common factor β may generally be unknown. The above require-
ments are usually assessed by virtue of an a posteriori analysis of the residuals vi, cf. Remark 20.

Following common practice, we postulate the existence of “true” values (ϑ,x0) generating the obser-
vations Yi according to Equation (3.5). These values are assumed to be (at least locally) unique within an
admissible set Ω ⊆ Θ×X . Both assumptions partially ensure the well-posedness of the inverse problem of
recovering ϑ and x0 from available data. Existence is usually justified heuristically by reference to model
validation (i.e., the flexibility of the model to effectively capture the process dynamics for the experimental
framework under scrutiny), while testing (local) uniqueness leads to the notion of a priori or structural
identifiability/observability discussed in the previous section.

A standard framework for estimating ϑ and x0 is to employ ordinary least squares (OLS) methodol-
ogy [144, 18], which aims at minimizing the mean squared distance between the model predictions and the
observed data by solving the constrained optimization problem

arg min
(ϑ,x0)∈Ω

N∑
i=0

(
Yi − h(x(ti),ϑ)

)2
. (3.6)

Although several alternative loss functions might be considered here, the popularity of OLS stems from
the fact that under the assumptions of the previous paragraph and if the noise terms V ∼ N (0, β2I)
are normally distributed, the expression (3.6) represents a Maximum Likelihood Estimate [144], which by
definition maximizes the probability of the given data with respect to the parameters. It is important to
note that the solution of the above optimization problem is a random variable itself and therefore has to be
complemented with an estimate of its accuracy, see Section 3.4. As usual, a point OLS estimate can be
derived by replacing the random variables in the above expression with their associated realizations, i.e.,

(
ϑ̂, x̂0

)
= arg min

(ϑ,x0)∈Ω

N∑
i=0

(
yi − h(x(ti),ϑ)

)2 =: arg min
(ϑ,x0)∈Ω

‖f1(ϑ,x0)‖22. (3.7)

For the ease of further illustration we will assume that the admissible region Ω (comprising possible con-
straints among the parameters and initial conditions) can be represented by a set of nonlinear equations

Ω = {ω =̂ (ϑT ,xT0 )T ∈ Rp+n; f2(ω) = 0} (3.8)

with f2 : Ω→ Rn2 sufficiently smooth and n2 < p+n. For perspective, in the framework of concentration
dynamics, the function f2 might typically include initial steady state relations. The treatment of possible
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inequality constraints among the components of ω will be limited to simple cases which can be relaxed to
the unconstrained case by suitable monotonous transformations, such as positivity or boundedness of indi-
vidual components ωi within a real-valued interval [a, b] ⊂ R. For perspective, positivity for ωi can easily
be guaranteed by setting ωi = exp (νi) and optimizing with respect to the unconstrained variable νi ∈ R.
This also results in an automatic scaling of the νi. Similarly, the ansatz ωi = a+ 0.5(b−a)(1 + tanh (νi))
ensures that ωi ∈ [a, b] for all νi ∈ R. More general inequality constraints can be treated within the frame-
work to be presented below by considering active set strategies as described, e.g., in [26, 57]. Since these
topics do not constitute a central part of this work, they will not be elaborated further here.

As inverse parameter estimation problems of the type (3.7) can seldom be solved analytically, several
iterative approaches have been proposed. Global minimization techniques, including stochastic optimiza-
tion and evolutionary algorithms, generally suffer from high computational cost as they rely on an extensive
number of function evaluations, see, e.g., the review of Banga et al. [16]. This drawback certainly limits
their usability in time-intensive models. In contrast, traditional minimization routines (e.g., steepest de-
scent, Gauss-Newton, and augmented Lagrangian methods [57, 58]) are based on the successive refinement
of an initial guess for the OLS estimate introduced above. The idea is to repeatedly solve the associated
initial value problem (IVP) over the entire observation interval [t0, tmax] and correct the current guess ac-
cording to a local descent direction, which is chosen in order to decrease the objective function in (3.7).
Potential obstacles encountered when using these techniques mainly stem from the following issues:

1. For poor choices of the initial guess the trajectory can become unstable and might diverge before the
final integration point tmax is reached.

2. The algorithm gets stuck in a local minimum with the associated trajectory being far off the measured
data points.

Both problems can partially be traced back to the very inefficient way in which the classical IVP approach
makes use of available information. Indeed, the set of data points yi offers a comparatively huge body of
prior knowledge with respect the solution y that is almost completely neglected. This observation provides
the heuristic motivation for a more sophisticated solution routine which we shall discuss in the following
section.

3.3 Multiple shooting
This section serves to introduce multiple shooting as a powerful numerical technique for iteratively solving
ordinary least squares problems, circumventing the above-mentioned problems. The intention is to give
a self-contained overview including the major details relevant for a successful re-implementation of the
method, together with an outline of the theoretical background scattered in the literature.
The main idea underlying the multiple shooting approach is treat (3.7) in the framework of multipoint
boundary value problems, which have originally been investigated by Stoer and Bulirsch [158]. These
numerical schemes were subsequently refined and mathematically analyzed by Bock [26], who also rec-
ognized their widespread applicability in more general classes of parameter identification problems, in-
cluding, e.g., differential algebraic equations (DAEs). For further details regarding the general scope
of multiple shooting as well as its superior stability compared with classical solution schemes we refer
to [25, 124, 172]. For a variety of applications and modifications proposed for covering PDEs and delay
differential equations see [118, 74]. The illustration in the sequel closely follows the original work by
Bock [26].

3.3.1 Numerical setup
We begin by choosing intermediate multiple shooting nodes t0 = τ0 < · · · < τM = tmax, partitioning the
observation interval intoM subintervals. On each of these subintervals Equation (2.16) will be solved using
auxiliary initial values x(τj) = sj ∈ Rn (i.e., s0 = x0). Thus, a discontinuous trajectory is generated,
with its piecewise representation being denoted by x(t; sj ,ϑ) for t ∈ [τj , τj+1]. The vectors sj constitute
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additional degrees of freedom in the optimization procedure, which, however, enter the problem in the
highly constrained format of M matching conditions

zj(sj , sj+1,ϑ) := x(τj+1; sj ,ϑ)− sj+1 = 0, j = 0, . . . ,M − 1. (3.9)

These matching conditions are introduced in order to enforce the continuity of the final trajectory.
By substituting the sub-trajectories x(ti; sj ,ϑ) into (3.7) for ti ∈ [τj , τj+1), one defines an augmented

nonlinear optimization problem
min
ω∈Ω
‖f1(ω)‖22, (3.10)

in the unknown vector ω = (ϑT , sT0 , . . . , s
T
M )T , where the admissible set Ω (cf. (3.8)) is now given by

Ω := {ω ∈ Rp+(M+1)n; f2(ω) = 0 and z(ω) := (z0(ω)T , . . . , zM−1(ω)T )T = 0}. (3.11)

Remark 6. It should be noted that further constraints with respect to the auxiliary variables sj can straight-
forwardly be incorporated into the function f2. This is especially beneficial in the treatment of DAEs, where
additional algebraic relations among the trajectories need to be taken into account.

Several solvers can be employed to tackle the equality constrained problem (3.10). However, in order
to fully exploit the special structure introduced via the continuity constraints in Equation (3.9), Bock [26]
proposes a generalized Gauss-Newton method, which iteratively refines an initial guess ω0 according to

ωk+1 = ωk + ∆ωk. (3.12)

The increment ∆ωk is obtained by solving the linearized subproblem

min
∆ωk
‖f1(ωk) + F1(ωk)∆ωk‖22 (3.13)

subject to the linearized constraints{
f2(ωk) + F2(ωk)∆ωk = 0
z(ωk) + Z(ωk)∆ωk = 0.

(3.14)

Here, capital letters denote the respective Jacobians.

Remark 7. For notational convenience, the explicit dependence of the above expressions on the current
estimate ωk as well as the iteration index itself will be omitted in the following.

Remark 8. (Integration and derivative generation) A commonly encountered characteristic of systems
describing mass balance or chemical reaction kinetics is that they incorporate dynamics proceeding with
widely differing time scales. Loosely spoken, such systems are being referred to as stiff and require spe-
cial attention with respect to their numerical solution, see, e.g., [69]. In our Matlab implementation of the
multiple shooting method, the routine ode15s is used for this purpose. In addition to the system trajec-
tories, under the previous assumptions on the function g the necessary sensitivities ∂x(t; sj ,ϑ)/∂ϑ and
∂x(t; sj ,ϑ)/∂sj for setting up the above Jacobians can be computed by simultaneously integrating the
matrix variational equations (cf. [68])

d
dt

(
∂x(t; sj ,ϑ)

∂ϑ

)
=
∂g
∂x

∂x(t; sj ,ϑ)
∂ϑ

+
∂g
∂ϑ

,
∂x(τj ; sj ,ϑ)

∂ϑ
= O (3.15)

and
d
dt

(
∂x(t; sj ,ϑ)

∂sj

)
=
∂g
∂x

∂x(t; sj ,ϑ)
∂sj

,
∂x(τj ; sj ,ϑ)

∂sj
= I. (3.16)

Here, O and I denote the zero and identity matrices of appropriate dimensions, respectively. Equa-
tions (3.15) and (3.16) are obtained by formal derivation of the original ODE system with respect to ϑ
and sj , respectively. Note that calculating the Jacobians ∂g/∂ϑ and ∂g/∂x by hand can be a time inten-
sive and error-prone task. It is therefore recommended to use symbolic computation software or automatic
differentiation packages (see [53] for instance) in this context. The results can subsequently be confirmed
by standard finite differencing schemes.
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Note that the above Jacobians are large, but sparse and highly structured. More specifically, F1 is a
(N + 1)× (p+ (M + 1)n) matrix given by

F1 =
(
F1,ϑ F1,s0 · · · F1,sM

)
:=

H
ϑ
0 Hs

0
...

. . .
HϑM Hs

M

 , (3.17)

where the rows ofHϑj andHs
j are given by the derivatives ∂h(x(t; sj ,ϑ),ϑ)/∂ϑ and ∂h(x(t; sj ,ϑ),ϑ)/∂sj

evaluated at ti ∈ [τj , τj+1), respectively. The matrix F2 reads

F2 =
(
∂f2
∂ϑ

∂f2
∂s0

· · · ∂f2
∂sM

)
∈ Rn2×(p+(M+1)n). (3.18)

Analogously, for the Jacobian Z associated with the matching conditions (3.9) we recognize the cyclic
block structure

Z =

 Gϑ0 Gs
0 −I

...
. . . . . .

GϑM−1 Gs
M−1 −I

 ∈ RMn×(p+(M+1)n), (3.19)

where the matrices

Gϑj :=
∂x(τj+1; sj ,ϑ)

∂ϑ
and Gs

j :=
∂x(τj+1; sj ,ϑ)

∂sj
(3.20)

are the propagation matrices of the variational equations (3.15) and (3.16) on the subinterval [τj , τj+1],
respectively.

By taking advantage of the specific structure of the matrix Z, the linearized problem (3.13) can effi-
ciently be reduced to a lower dimensional problem of the original size p+n by Gaussian block elimination.
For this purpose, we first note that due to (3.14) the increments ∆sj can be determined from ∆s0 by

∆sj+1 = Gϑj ∆ϑ+Gs
j∆sj + zj . (3.21)

By recursively substituting these expressions into (3.13) and (3.14) for j = (M − 1), . . . , 0, one arrives at
a condensed problem

min
∆s0,∆ϑ

‖d0
1 + P 0

1 ∆ϑ+ S0
1∆s0‖22,

d0
2 + P 0

2 ∆ϑ+ S0
2∆s0 = 0,

(3.22)

where the respective matrices are defined for j = M, . . . , 1 by the backward recursions

dj−1
l = djl + Sjl zj−1, l = 1, 2,

P j−1
l = P jl + SjlG

ϑ
j−1, l = 1, 2,

Sj−1
1 = F1,sj−1 + Sj1G

s
j−1,

Sj−1
2 =

∂f2
∂sj−1

+ Sj2G
s
j−1

(3.23)

with dM1 := f1, dM2 := f2, PM1 := F1,ϑ, PM2 := ∂f2/∂ϑ, SM1 := F1,sM and SM2 := ∂f2/∂sM .

Remark 9. The above-mentioned backward recursions can be seen as a block decomposition of the matrix
F :=

(
FT1 FT2 ZT

)T
. In particular, with the abbreviation

Ckj :=
{
Gs
k−1 · · ·Gs

j k > j
I k ≤ j (3.24)
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it holds that

Sj1 =
M∑
k=j

F1,skC
k
j , Sj2 =

M∑
k=j

∂f2
∂sk

Ckj , (3.25)

and consequently

P j1 = F1,ϑ +
M−1∑
k=j

Sk+1
1 Gϑk , P j2 =

∂f2
∂ϑ

+
M−1∑
k=j

Sk+1
2 Gϑk . (3.26)

From (3.26) we find the decomposition

F :=
(
FT1 FT2 ZT

)T =
I −

(
S1

1

S1
2

)
· · · −

(
SM1
SM2

)
I

. . .
I





(
P 0

1 S0
1

P 0
2 S0

2

)
I

. . .
I


I(p+n) O(p+n)×Mn

Z

 ,

which, by the Frobenius rank inequality, allows us to deduce that

rankF = rank
(
P 0

1 S0
1

P 0
2 S0

2

)
+ rankZ = rank

(
P 0

1 S0
1

P 0
2 S0

2

)
+Mn. (3.27)

As the above decomposition holds true as well for arbitrary submatrices that are derived by deleting rows
from

(
FT1 FT2

)T
, it follows that

rank
(
F1

F2

)
= rank

(
P 0

1 S0
1

P 0
2 S0

2

)
. (3.28)

Similarly, by applying the above decomposition to
(
FT2 ZT

)T
rather than F we find that rankF2 =

rank
(
P 0

2 S0
2

)
.

Under the general regularity condition that F2 has full rank, the extraction of ∆ϑ and ∆s0 from the
condensed formulation (3.22) can be achieved by standard routines for solving linear least squares problems
with linear constraints [157, 93]. According to the previous remark, if F2 is full-ranked, the same holds
true for the matrix

(
P 0

2 S0
2

) ∈ Rn2×(p+n). Using QR-decomposition, we can thus find an orthogonal
matrix Q and an n2 × n2 upper triangular matrix R with non-zero diagonal elements such that(

P 0T

2

S0T

2

)
= Q

(
R
O

)
⇒ (

P 0
2 S0

2

)
Q =

(
RT O

)
. (3.29)

Hence, by defining (
∆ϑ
∆s0

)
=: Q

(
a1

a2

)
, a1 ∈ Rn2×1 (3.30)

the condensed problem (3.22) can be solved by determining a1 according to the transformed constraints
d0

2 +RTa1 = 0 and computing a2 from the unconstrained least squares problem

min
a2
‖d0

1 +
(
P 0

1 S0
1

)
Q

(
a1

a2

)
‖22 =: min

a2
‖b2 +A2a2‖22. (3.31)

Note that (3.31) can again be solved by QR- or singular value decomposition. Effectively, in the latter case
we calculate two orthogonal matrices U1 and U2 such that

A2 = U1


σ1

. . .
σm

O

UT2 , (m = p+ n− n2) (3.32)



3.3. MULTIPLE SHOOTING 31

where σ1 ≥ · · · ≥ σm ≥ 0 are the singular values of A2 [64]. As multiplication of b2 + A2a2 with UT1
does not change the norm in (3.31), with b2 := UT1 b2 we find that

a2 = U2(b2,1/σ1, . . . , b2,m/σm)T . (3.33)

A direct solution of the normal equations associated with (3.31) should generally be avoided due to
potential numerical instabilities, see [93, Ch. 19] for instance.

A typical picture displaying the performance of the iteration scheme in (3.12) is presented in Fig. 3.1.

0 10 20 30 40 50
0

20

40

is
o

p
re

n
e

[n
m

o
l/
l]

0 10 20 30 40 50
0

10

20

is
o

p
re

n
e

[n
m

o
l/
l]

0 10 20 30 40 50
0

10

20

[min]

is
o

p
re

n
e

[n
m

o
l/
l]

data multiple shooting trajectory IVP trajectory

Iteration step: 1

Iteration step: 6

Iteration step: 9

Figure 3.1: Schematic illustration of the multiple shooting approach, applied to the identification of the
isoprene model in Chapter 7 with the multiple shooting approach. A length of 1 min is imposed for each
multiple shooting interval. The states x and a set of unknown parameters ϑ are estimated by observing
noisy data from the first component x1 of the state vector (corresponding to the isoprene concentration in
exhaled breath). Convergence is achieved after 9 iterations.

In this example, the multiple shooting method is employed for calibrating a model describing isoprene
kinetics in the human body by virtue of measured breath concentration profiles during exercise. Further
details can be found in Chapter 7. Starting from an initial guess for the set of unknown model parameters,
note that while the first trial trajectory integrated over the entire interval [t0, tmax] might soon loose contact
with the observed data, the discontinuous multiple shooting trajectory can be forced to stay close to the
measurements by assigning adequate a priori guesses to the initial conditions sj at the multiple shooting
nodes τj . Such a priori guesses are usually available from physical considerations or from the given data
points (for instance if y = xm for some component of the state vector, as in the example above). This
allows the user to directly bring in accessible information about the process dynamics and will prevent the
piecewise solution from departing too drastically from the measurements. Furthermore, by an appropriate
choice of the grid points τj , it can be ensured that every local sub-trajectory x(t; sj ,ϑ) can be continued to
the next node, i.e., divergence is largely avoided. In particular, this dampens the impact of poor estimates
for the model parameters ϑ on the solution process.

While the greater flexibility of multiple shooting at first glance seems to come at the price of a dras-
tically increased computational cost due to a higher dimensional formulation, in Equation (3.22) we have
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shown that the special structure of the matching conditions can be exploited to reduce the number of op-
timization variables in each iteration step to the original problem size p + n. An implementation should
take advantage of this fact. Furthermore, it is emphasized that the integration of the local IVPs on each
sub-interval (representing the most time intensive step in the numerical setup) can easily be parallelized.

3.3.2 Optimality conditions and convergence
In the following we will briefly review the criteria for the solvability of constrained optimization problems
of the form (3.10). For notational convenience f2 and z are lumped together into one single constraint
function fc := (fT2 , z

T )T : D ⊆ Rnv → Rnc , with D open and convex. Accordingly, the nonlinear
problem (3.10) together with the constraints in (3.11) can be written as

min
ω
‖f1(ω)‖22 subject to fc(ω) = 0, (3.34)

while its linearized version according to (3.13) reads

min
∆ω
‖f1(ω) + F1(ω)∆ω‖22 subject to fc(ω) + Fc(ω)∆ω = 0. (3.35)

Here Fc :=
(
FT2 ZT

)T
denotes the Jacobian associated with fc.

Two general requirements will have to be fulfilled in the following.

Hypothesis 1. (Constraint qualification [CQ]) For all ω ∈ D it holds that ω is regular, i.e.,

rankFc(ω) = nc. (3.36)

Hypothesis 2. (Positive definiteness [PD]) For all ω ∈ D it holds that

rankF (ω) := rank
(
F1(ω)
Fc(ω)

)
= nv. (3.37)

Remark 10. We emphasize the fact that [PD] is closely related to the concept of local identifiability as
introduced in the previous chapter. In particular, this condition will be satisfied if the sensitivities of the
model output with respect to the unknown initial conditions and model parameters are linearly independent.

The last condition can easily be shown to be equivalent to

∆ωTFT1 F1∆ω > 0 for all ∆ω 6= 0 with Fc∆ω = 0, (3.38)

which will yield sufficient conditions for a Kuhn-Tucker point of (3.35) to be a strict minimizer. To illustrate
this point, we need to recall the following fundamental result.

Theorem 3.2. (Necessary and sufficient conditions for optimality) Let ω∗ ∈ D be regular and a minimizer
of (3.34). Then ω∗ is feasible, i.e.

fc(ω∗) = 0, (3.39)

and there exist Lagrange multipliers λ∗ such that for the gradient of the Lagrange function

L(ω,λ) :=
1
2
‖f1(ω)‖22 − λT fc(ω) (3.40)

it holds that
∂

∂ω
L(ω∗,λ∗) = f1(ω∗)TF1(ω∗)− (λ∗)TFc(ω∗) = 0. (3.41)

Conversely, let ω∗ be a Kuhn-Tucker (KT) point of (3.34), i.e., there exist multipliers λ∗ such that (3.39)
and (3.41) are satisfied. If, additionally, the Hessian of L satisfies

ωT
∂2

∂ω2
L(ω∗,λ∗)ω > 0 for all ω 6= 0 with Fcω = 0, (3.42)

then ω∗ is a strict solution of (3.34) in D.



3.3. MULTIPLE SHOOTING 33

For a proof we refer to standard textbooks on optimization theory, e.g., [57].

Applying the previous theorem to the linearized problem (3.35) shows that under the assumptions [CQ]
and [PD] there exists a unique minimizer ∆ω∗ for every (fT1 (ω), fTc (ω))T , i.e., the increment in each it-
eration step associated with (3.12) is well-defined. Indeed, the stationarity and feasibility conditions (3.41)
and (3.39) in this case read (

FT1 f1
fc

)
+
(
FT1 F1 FTc
Fc O

)(
∆ω
−λ
)

= 0, (3.43)

respectively. Subsequently, from (3.38) and by the argument(
FT1 F1 FTc
Fc O

)(
a1

a2

)
= 0⇒ aT1 F

T
1 F1a1 + aT1 F

T
c a2 = aT1 F

T
1 F1a1 = 0

[PD]⇒

a1 = 0
[CQ]⇒ a2 = 0 (3.44)

the above system matrix is non-singular and hence there exists a unique Kuhn-Tucker point

∆ω∗ = − (I O
)(FT1 F1 FTc

Fc O

)−1(
FT1 O
O I

)(
f1
fc

)
=: −F+

(
f1
fc

)
, (3.45)

which additionally satisfies the sufficient condition (3.42) for minimality due to [PD] (note that the Hessian
of the Lagrange function in the linearized case is FT1 F1).

The increment ∆ω can hence formally be obtained in every iteration step by multiplying the vector
combining the residuals f1 and the constraints fc with a generalized inverse F+ satisfying the fundamental
relationship

F+F = F+

(
F1

Fc

)
=
(
I O

)(FT1 F1 FTc
Fc O

)−1(
FT1 F1 FTc
Fc O

)(
I
O

)
= I. (3.46)

In the unconstrained case fc = 0, as can easily be seen from (3.43), the generalized inverse F+ =
(FT1 F1)−1FT1 reduces to the Moore-Penrose pseudoinverse and the iterations (3.12) correspond to the
usual Gauss-Newton method.

Remark 11. Due to potential numerical instabilities, ∆ω should never be calculated on the basis of the
explicit formula (3.45) but via the condensed problem (3.22) and the recursions (3.21).

Adopting the notation from above, the following convergence theorem can be proven.

Theorem 3.3. (Local contraction of the generalized Gauss-Newton iteration)
Let f := (fT1 , f

T
c )T be a continuously differentiable mapping defined on an open and convex subset D ⊆

Rnv and let F+ denote the generalized inverse defined in (3.45). Moreover, let there be constants κ < 1
and ν <∞ such that the following two Lipschitz conditions are fulfilled for some norm ‖·‖:

(a) For all s ∈ [0, 1] and ω2 = ω1 − F+(ω1)f(ω1) in D it holds that

‖F+(ω2)(F (ω1 + s(ω2 − ω1))− F (ω1))(ω2 − ω1)‖ ≤ νs‖ω2 − ω1‖2. (3.47)

(b) If R := f − F (F+f) denotes the residual of the linear problem (3.35) then for all ω1,ω3 ∈ D it
holds that

‖F+(ω3)R(ω1)‖ ≤ κ‖ω3 − ω1‖. (3.48)

Consequently, if an initial guess ω0 can be found such that

δ0 :=
ν

2
‖∆ω0‖+ κ < 1

(
δk :=

ν

2
‖∆ωk‖+ κ

)
(3.49)

and the ball B := {ω; ‖ω − ω0‖ ≤ ‖∆ω0‖/(1− δ0)} is in D, then
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1. The iteration ωk+1 = ωk + ∆ωk is well-defined and ωk ∈ B for k ≥ 1.

2. The refinements ωk converge to a fixed point ω∗ ∈ B with

−∆ω∗ = F+(ω∗)f(ω∗) = 0. (3.50)

3. The convergence is linear with ‖∆ωk+1‖ ≤ δk‖∆ωk‖ < ‖∆ωk‖. In particular, the final rate of
convergence is κ(ω∗).

Proof. Here we only give a sketch of the proof which follows the line of argumentation for similar conver-
gence results, see [39, 38]. Further details are elaborated in [26, Th. 3.1.44]. The central point is the third
assertion, which can be seen to hold due to the fact that

‖∆ωk+1‖ = ‖F+(ωk+1)
(
f(ωk+1)−R(ωk) +R(ωk)

)‖
= ‖F+(ωk+1)(f(ωk+1)− f(ωk)− F (ωk)∆ωk) + F+(ωk+1)R(ωk)‖

= ‖F+(ωk+1){
1∫

0

F (ωk + s∆ωk)∆ωkds− F (ωk)∆ωk}+ F+(ωk+1)R(ωk)‖

≤ ‖
1∫

0

F+(ωk+1)
(
F (ωk + s∆ωk)− F (ωk)

)
∆ωkds‖+ ‖F+(ωk+1)R(ωk)‖

≤ ν

2
‖∆ωk‖2 + κ‖∆ωk‖ = δk‖∆ωk‖.

(3.51)

With the above assumptions this shows that δk as well as ‖∆ωk‖ is strictly monotonically decreasing
and that ωk ∈ B. In particular, the iterates ωk form a Cauchy sequence and hence ωk → ω∗ ∈ B.
Equation (3.50) now follows from ∆ωk = −F+(ωk)f(ωk)→ 0 and the continuity of F+f .

Substituting ∆ω∗ = 0 into (3.43) according to Equation (3.50) shows that the final iterate ω∗ will be
a KT point of (3.34), i.e., it satisfies the necessary conditions for optimality associated with the original
nonlinear problem.

Remark 12. Note that the essential condition (3.48) – by taking into account (3.50) – can be reformulated
in the solution point ω∗ as

sup
ω∈D

‖F+(ω)f(ω∗)‖
‖ω − ω∗‖ < 1. (3.52)

In particular, this excludes convergence for problems with “too large” final residuals f(ω∗). Such a situa-
tion can be interpreted as an inherent incompatibility of the model with the data. In other words, if [CQ]
and [PD] can be assumed to hold, divergence of the iteration scheme (3.12) suggests that the model might
not be adequate for capturing the observed data. Insufficiencies of this type can only be resolved by a
modification of the model structure. Contrarily, in the compatible case f(ω∗) = 0, i.e., for problems with
vanishing residuals, we find that κ can be set to zero in the final iterations and from the last line of (3.51) it
can hence be deduced that the method will converge quadratically. In [26, Th. 3.1.64] it is further demon-
strated that the condition κ < 1 indeed ensures the strict minimality of ω∗ according to the sufficient
conditions (3.42).

Remark 13. (Ill-conditioning) If the system matrix in (3.43) becomes rank deficient (or nearly so), the
solution to the linear subproblem, i.e., the resulting increment ∆ω is not unique (or badly determined). A
typical case where this is likely to happen is when F1 is ill-conditioned near the solution point (e.g., if the
associated sensitivities of the model output are almost linearly dependent) and if f2 = 0, i.e., there is no
further information on ϑ and the sj in the form of additional equality constraints.

Considering the situation in (3.31), ill-conditioning is reflected by singular values ofA2 that are close to
zero. Such cases can be handled by employing a pseudo-inversion method for the solution of (3.31), which
typically is based on a numerical rank decision. For this purpose, we may set individual singular values σi
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to zero if they are below a certain threshold value, e.g., if σi ≤ ε‖A2‖∞, where ε is the relative accuracy of
the entries of A2 [64]. Substitution of a2,i = 0 for the corresponding components yields a minimum norm
solution for a2 and ensures that all components ofω contributing to the ill-conditioned directions are frozen
at their current value. While convergence in the rank-deficient case can still be guaranteed under conditions
similar to those stated in Theorem 3.3, it should be noted that the extracted fixed point ω∗ then is a KT
point of a modified problem rather than the original one given in (3.34) (see [26, Th. 4.3.38] for further
details). In this sense, pseudo-inversion should only be seen as a convenient way of increasing algorithmic
stability in cases where rank-deficiency occurs during isolated iterations, rather than as a general remedy
for ill-conditioned problems.

Remark 14. (Termination criterion) According to the previous theorem, we can deduce that

‖ωk+1 − ω∗‖ = ‖ωk+1 − ωk+2 + ωk+2 − · · ·‖ ≤ ‖∆ωk+1‖+ ‖∆ωk+2‖+ · · ·

≤
∞∑
j=1

(δk)j‖∆ωk‖ =
δk

1− δk ‖∆ω
k‖. (3.53)

Furthermore, from (3.51) δk might be estimated as δ̂k := ‖∆ωk+1‖/‖∆ωk‖. Hence, a prototypical stop-
ping criterion can be derived by applying relative scaling to the individual components ∆ωki and requiring
that

δ̂k

1− δ̂k ‖(∆ω
k
1/sc1, . . . ,∆ωknv/scnv )‖ ≤ TOL. (3.54)

Here, TOL is a prescribed error tolerance and the scaling variables are defined by sci = max (scmin, |ωki |),
where scmin > 0 is introduced to maintain the relative error concept for cases in which ωki is close to zero.

3.3.3 Globalization of convergence
With the notation of Theorem 3.3, a problem often encountered in practice is that the initial guess ω0

is situated too far from the fixed point ω∗ to satisfy the conditions for local convergence, in the sense
that (3.49) is violated. In such cases, the initial increment ∆ω0 might actually point away from ω∗, see
Fig. 3.2.
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Figure 3.2: Full step versus relaxed update scheme.

In order to circumvent this problem, a common approach for enlarging the convergence domain is to
replace the basic iteration (3.12) with a damped or relaxed version

ωk+1 = ωk + tk∆ωk, (3.55)

where the steplength tk ∈ (0, 1] is chosen such that the distance between ωk+1 and ω∗ decreases. For this
purpose, the level function

T (ω) := ‖F+(ω∗)f(ω)‖22 (3.56)

is introduced. Linearization around ω∗ yields

T (ω) = ‖F+(ω∗)(f(ω∗) + F (ω∗)(ω − ω∗) +O(‖ω − ω∗‖22)‖22 (3.57)

and hence by (3.50) and (3.46)

T (ω) = ‖ω − ω∗‖22 +O(‖ω − ω∗‖32). (3.58)
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Thus, T measures the distance betweenω andω∗ up to third order in the vicinity of the solution and ideally
adapts to the local geometry of the admissible region. As ω∗ is a priori unknown, by using the heuristic
F+(ω∗) ≈ F+(ωk), the iteratively weighted natural level function [38] can be defined as

T k(ω) := ‖F+(ωk)f(ω)‖22. (3.59)

Since for the gradient of T k it holds that

−∇T k(ωk) = −2(f(ωk)TF+(ωk)TF+(ωk)F (ωk))T (3.46)= −2F+(ωk)f(ωk) = 2∆ωk, (3.60)

the increment ∆ωk is just the steepest descent direction of T k. On the basis of this observation the optimal
relaxation coefficient tk can then be determined by solving the one-dimensional line search problem

tk = arg min
t∈(0,1]

T k(ωk + t∆ωk) =: arg min
t∈(0,1]

T̃ k(t), (3.61)

which can be treated by standard techniques [57]. For instance, a simple ad hoc algorithm for an approxi-
mate minimization would be

1. Find an estimate t̂k of tk, e.g., t̂k = tk−1.

2. If T̃ k(t̂k) ≥ T̃ (0) find the smallest l ≥ 1 such that T̃ k(t̂k2−l) < T̃ (0) and set tk := t̂k2−l.

3. If T̃ k(t̂k) < T̃ (0) find the smallest l ≥ 0 such that T̃ k(t̂k2l+1) > T̃ k(t̂k2l) and set tk :=
min{1, t̂k2l}.

For more sophisticated procedures based on a similar predictor-corrector strategy as above we refer to [26,
124]. The fact is stressed that for each evaluation of T̃ k(t) the values f(ωk + t∆ωk) have to be obtained,
which implies a complete solution of the underlying ODE system and might therefore be a time-intensive
task. However, the increased computational cost of a damping procedure is offset in many cases by a
dramatically accelerated convergence of the overall iteration.

3.4 Confidence intervals
As has been indicated in Section 3.2, the OLS minimization procedure only leads to a point estimate ω∗

of the underlying “true” value ω, which necessarily needs to be complemented with some measure of its
reliability (usually taking the form of confidence intervals). In other words, we must quantify the extent
to which ω∗(V) varies with the random error terms V, cf. Equation (3.6). This statistical analysis is of
paramount importance for examining the quality of the computed estimates and assists in deciding whether
these estimates are satisfactory or whether additional experiments should be conducted in order to improve
their accuracy. Two different approaches will be discussed in this context, whereby a clear focus on the
multiple shooting technique discussed in the previous section will be maintained.

Remark 15. An interesting aspect related to uncertainty assessments for the fitted variables in the specific
case of multiple shooting is that confidence intervals might also be constructed for the auxiliary variable sj ,
thus providing a discrete measure of accuracy for the entire solution trajectory. This is particularly useful
in applications where certain state components xi cannot be accessed by direct measurements.

3.4.1 Direct methods
Direct methods for constructing confidence intervals in nonlinear regression problems are mainly based on
linear perturbation analysis. For this purpose, for fixed V we first interpret the residual vector f1(ω,V) as
a function of ω and V satisfying

f1(ω,0) = 0. (3.62)

Furthermore we define the auxiliary function

G(ω,λ,V) :=
(
F1(ω)T f1(ω,V) + Fc(ω)Tλ

fc(ω)

)
, (3.63)



3.4. CONFIDENCE INTERVALS 37

incorporating the stationarity and feasibility conditions (3.41) and (3.39), respectively. As ω fulfills the
necessary conditions for optimality in the noise-free case V = 0 we conclude that there exist Lagrange
multipliers λ such that

G(ω,λ,0) = 0. (3.64)

In particular, due to the regularity condition [CQ] it must then hold that λ = 0. By applying the Implicit
Function Theorem to (3.64), it can now be shown that the KT point ω∗ = ω∗(V) and λ∗ = λ∗(V) vary
smoothly with V, which is a fundamental prerequisite for the well-posedness of the inverse parameter
estimation problem. In fact, the Jacobian of G at (ω,0,0) is given by

∂G
∂(ω,λ)

∣∣∣
(ω,0,0)

=

FT1 F1 +
N∑
i=0

Hf1,if1,i FTc

Fc O

∣∣∣
(ω,0,0)

(3.62)=
(
FT1 (ω)F1(ω) FTc (ω)

Fc(ω) O

)
Here, H denotes the Hessian. In analogy to (3.44), the last matrix is non-singular due to [PD] and [CQ].
As a result,(

∂ω∗

∂V
∂λ∗

∂V

)
(0) = −

(
∂G

∂(ω,λ)

−1 ∂G
∂V

) ∣∣∣
(ω,0,0)

= −
(
FT1 (ω)F1(ω) FTc (ω)

Fc(ω) O

)−1(
FT1 (ω)

O

)
and thus the first-order approximation

ω∗(V) ≈ ω∗(0) +
∂ω∗

∂V
(0)V = ω − (I O

)(FT1 (ω)F1(ω) FTc (ω)
Fc(ω) O

)−1

×(
FT1 (ω) O

O I

)(
V
0

)
= ω − F+(ω)

(
V
0

)
. (3.65)

can be established. From the assumptions on V in Section 3.2 we conclude that E{ω∗} ≈ ω and

cov{ω∗} ≈ E{F+(ω)
(
V
0

)(
VT 0

)
F+(ω)T } = F+(ω)

(
β2I O
O O

)
F+(ω)T . (3.66)

Remark 16. As ω is unknown, the estimator covariance matrix cov{ω∗} is usually approximated in the
last iteration step by

cov{ω∗} ≈ F+(ω∗)
(
β2I O
O O

)
F+(ω∗)T = C(ω∗). (3.67)

Hence, cov{ω∗} can be computed via the generalized inverse without further computational effort, thus
allowing for a very convenient a posteriori analysis of the extracted estimates. Following the previous line
of argumentation, in the unconstrained case fc = 0 we recover the familiar covariance estimate

cov{ω∗} ≈ β2(FT1 F1)−1, (3.68)

which in the case of Gaussian error terms is just the inverse of the Fisher information matrix. If the common
factor β2 of the measurement variance is unknown, it can be estimated from the final residuals by

β̂2 =
‖f1(ω∗)‖22

l2
, (3.69)

where l2 := N + 1− l1 and l1 := nv − nc is the number of fitted parameters [26].

From (3.67), approximate standard errors σ{ω∗i } are given by

σ̂{ω∗i } =
√
C(ω∗)i,i. (3.70)

On the basis of these results, non-parametric confidence intervals for each component ω∗i might be con-
structed by considering Tchebycheff’s inequality, asserting that

Pr
(|ω∗i − E{ω∗i }| > dα

)
< α (3.71)
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for dα = σ{ω∗i }/α. A corresponding 100(1− α)% confidence interval for ω∗i can hence be computed by

CIα(ω∗i ) ≈ [ω∗i − σ̂{ω∗i }/α, ω∗i + σ̂{ω∗i }/α]. (3.72)

Additionally, from (3.65) the estimate ω∗ is a weighted average of iid random variables and hence an
appropriate version of the Central Limit Theorem yields that, asymptotically,

ω∗ ∼ N (ω, C(ω)). (3.73)

From this, parametric confidence intervals can be computed by replacing C(ω) with the obvious estimate.
A rigorous proof of the above result is elaborated in [144]. Less conservative direct assessments usually
require further assumptions on the error distribution, e.g., V ∼ N (0, β2I), see [144, 26]. The latter
premise can be investigated by means of standard graphical and formal methods from residual analysis
(e.g., quantile-quantile plots or Kolmogorov-Smirnov tests).

Note that the quality of the standard errors and confidence intervals introduced above strongly depends
on the extent to which the linearization (3.65) is valid. Thus, if the intrinsic curvature of the objective
function ‖f1‖22 atω is high, the coverage probability of the confidence intervals based on linear perturbation
analysis can differ drastically from its nominal level.
In order to surmount these obstacles, alternative confidence intervals can be constructed on the basis of
bootstrapping, which we shall briefly illustrate in the next subsection.

Remark 17. (Information content of the covariance matrix) Some key measures related to practical es-
timability can be distilled from the correlation matrix R defined by

Ri,j :=
C(ω∗)i,j√

C(ω∗)i,iC(ω∗)j,j
∈ [−1, 1], (3.74)

containing the approximate correlation coefficients quantifying the degree of interplay between the ith and
jth parameter under scrutiny [46, 144, 79, 139]. A value of Ri,j near +1 or−1 provides strong indications
for a lack of identifiability when both parameters are estimated simultaneously, as a change in the model
output caused by a perturbation of the component ωi can nearly compensated by an appropriate change in
ωj . The prototypical situation in which such obstacles arise is if the experimental scenario only provides
data that are insufficiently rich in information for jointly determining both parameters (despite the fact that
the individual sensitivity of the model output with respect to each of these parameters is reasonably large).
An equivalent viewpoint is that the model structure is over-parameterized in the present experimental con-
text, as a modified description with one of the two parameters being replaced by an adequately scaled
version of the second one will do almost as well in explaining the observed data.

Remark 18. (Optimal experiments) As a second practical remark, it should be noted the explicit for-
mula (3.67) for C = C(ω∗,u) can be exploited for designing optimal experiments. Loosely spoken, this
amounts to finding feasible input functions u for which some measure of the “size” of C (determining the
length of confidence intervals or the volume of confidence regions forω∗) is minimized. A typical criterion
for instance is to find a minimum of

Φ(C) =
1
nv

traceC, (3.75)

representing the average variance of the fitted parameters. For further details we refer to [20, 51]. Evi-
dently, optimal experimental design for maximizing the statistical reliability of the estimates is particularly
appealing in cases where the conductible measurements are costly in some sense (which in a physiological
setting usually means invasive and/or time-intensive).

3.4.2 Bootstrap confidence intervals
Suppose that we were able to repeat the experiment leading to the observed data yi := h(x(ti,ω),ω) + vi
under exactly the same conditions. This would yield a second data set {ybi ; i = 0, . . . , N} and would
subsequently permit the calculation of an additional OLS point estimate ω∗,b. By iterating this procedure
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B times we would finally arrive a set of values {ω∗,b; b = 0, . . . , B}, approximating the distribution of
ω∗ as a function of the measurement error V.

Bootstrapping [47, 48, 146, 77, 42, 17] essentially mimics this idea and artificially creates new data
points ybi by means of extensive resampling from the extracted residuals. The popularity of this approach
mainly stems from the fact that it is completely automatic and can be applied irrespective of model com-
plexity and the actual error distribution, as long as it can be ensured that the individual error terms Vi are
independent and identically distributed (iid). The necessity of this requirement will become evident from
the discussion below.

As a second advantage, bootstrapping does not rely on linearization, rendering it as a robust tool if the
nonlinearity of the least squares functional at the solution point is anticipated to be substantial. This flexi-
bility, however, comes at the price of high computational burden, which can rapidly become prohibitive in
cases where the underlying optimization process is very time-intensive.

From the perturbation argument in Section 3.4.1, the OLS estimation procedure in Section 3.2 can be
reformulated as a transformation of random variables

ω∗i = R(V), (3.76)

i.e., the distribution of the component ω∗i depends on the the joint distribution function PV of the error
terms. Here, R can be considered as an appropriate smooth functional reflecting the estimation algorithm.
In order to quantify the accuracy of the components ofω∗ we are thus primarily interested in the distribution
function PR of R. Under the assumption of iid error terms Vi with common distribution function PV , the
latter can formally be written as

PR(r) iid=
∫
χ(−∞,r] (R(V))

N∏
i=0

dPV , (3.77)

where χ denotes the characteristic function and the integration is over supp{V }N+1. Since PV is a priori
unknown, it has to be approximated in some way. One fruitful approach to do this is by employing what
Efron [48] calls the plug-in principle. One merely replaces PV in (3.77) by its empirical distribution
function

P̂V (v) =
1

N + 1

N∑
i=0

χ(−∞,v](vi), (3.78)

thus yielding the so-called theoretical bootstrap estimator

P boot
R (r) =

∫
χ(−∞,r] (R(V0, . . . , VN ))

N∏
i=0

dP̂V (Vi). (3.79)

This plug-in principle is intuitively reasonable, since the discrete distribution function P̂V will approach
its continuous counterpart PV for large data length N + 1 (pointwise, this is just a consequence the Strong
Law of Large Numbers).

In a next step, P boot
R is approximated by Monte Carlo integration, which allows for the calculation

of high-dimensional integrals by interpreting them as expectations of certain random variables. For this
purpose, first note that (3.79) can be reformulated as

P boot
R (r) = EQN

i=0 d bPV {χ(−∞,r](R(V0, . . . , VN ))} (3.80)

Hence, by the Strong Law of Large Numbers we can easily deduce the approximation

P boot
R ≈ P boot,B

R (r) =
1
B

B∑
b=1

χ(−∞,r](R(vb)), (3.81)
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where vb is an independent random sample generated according to the probability measure

vb ∼
N∏
i=0

dP̂V (3.82)

and B is the number of bootstrap simulations. Note that P̂V , unlike PV , is a known distribution, namely
the one putting mass (N + 1)−1 on each residual vi, i.e.,

P̂V ∼ U({v0, . . . , vN}). (3.83)

Thus, realizing a sample vb as above amounts to simulating N + 1 independent realizations following a
uniform distribution over the set {v0, . . . , vN}, which can easily be implemented by means of standard
random variate generators, cf. Remark 30.

Remark 19. As the aforementioned mechanism actually is equivalent to taking N + 1 resamples with
replacement from the set {v0, . . . , vN}, bootstrapping is often classified as data resampling technique.
Note, however, that resampling merely represents a convenient way for evaluating the integral in (3.79)
rather than a necessary step. Moreover, if a specific distribution P̃V can be identified that fits the extracted
residuals, the error terms might be resampled using that distribution rather than P̂V (cf. (3.78)). This variant
is called parametric bootstrapping.

The above discussion paves the way for a sampling-based approximation of the distribution function
PR, from which any desired statistical measure on ω∗i can be derived. In particular, the following algorithm
summarizes the necessary steps for the construction of approximate standard errors σ̂{ω∗i }. This variant
is referred to in the literature as bootstrapping residuals (see, e.g., [77]). An application of the scheme
below can be found in Chapter 7, where bootstrap standard errors are calculated for the model parameters
extracted from the fitting procedure presented in Fig. 3.1.

Algorithm 2 (Bootstrapping residuals)

Let ω∗,0 := ω∗ denote the minimizer from the original OLS estimation procedure.

1. For b from 1 to B do

→ Create N + 1 samples vbi ∼ U({v0, . . . , vN}) as well as synthetic data points ybi =
h(x(ti,ω),ω) + vbi ≈ h

(
x(ti,ω∗,0),ω∗,0

)
+ vbi .

→ Obtain ω∗,b = R(vb), i.e., solve the OLS problem with underlying data ybi . Here, the original
OLS estimate ω∗,0 can serve as an appropriate initial guess.

2. Calculate σ̂{ω∗i } as the empirical standard deviation of the population {ω∗,bi ; b = 0, . . . , B}.

Analogously, an approximate confidence interval CIα(ω∗i ) for ω∗i might be constructed from the α/2-
and (1− α/2)-percentiles associated with {ω∗,bi ; b = 0, . . . , B}. Apart from this so-called bootstrap per-
centile interval, several other variants exist [48, 146].

It is clear that due to the use of an approximation for PV as well as due to the Monte Carlo proce-
dure (3.81), the coverage probability of such confidence intervals will generally differ from the desired
nominal level (1− α). Proofs of consistency, i.e.,

Pr (ω∗i ∈ CIα(ω∗i ))→ 1− α (3.84)

as N and B tend to infinity can be found in [48, 146] and references therein and will not further be
elaborated here. Ultimately the convergence above relies on the extent to which the empirical distribution
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function P̂V is able to mimic the decisive characteristics of PV for fixed N . In particular, if N is small it
should be recognized that bootstrap confidence intervals can only provide a “quick” check of the robustness
of the calculated estimates. Moreover, the potential improvement of coverage performance by increasing
B is limited – in practice, a moderate value of B ≈ 200 usually suffices [77].

Remark 20. (Residual analysis and practical remarks) The central requirements of independent and iden-
tically distributed error terms (stemming from (3.77)) can be verified a posteriori by various standard tech-
niques from residual analysis. Simple visual tests that often prove sufficient for picking up violations of
aforementioned assumptions include plots of the residuals vs. time, i.e., plots of the points (ti, vi), as well
as of the residuals vs. the model predictions h(x(ti,ω∗),ω∗). A random pattern in the first suggests that the
assumption of independence is reasonable, while a random, non-increasing pattern in the second provides
a strong indication for homoscedasticity [18]. Formal statistical assessments can be achieved by testing for
the significance of serial correlations among the residuals, e.g., using a Ljung-Box portmanteau test or a
runs test [100, 27]. Some strategies for handling cases in which the iid assumption above is violated are
indicated in [42] (see also Chapter 7).
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Chapter 4

On-line identification
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This chapter is devoted to on-line methods for approaching the system identification problem intro-
duced in Chapter 3. The aim will be to develop algorithmic schemes that allow for a sequential estimation
of the states and parameters governing the behavior of physiological models as described in Section 2.3.
Such on-line procedures are usually summarized under the term filtering and play a prominent role in
various fields of engineering and science. We emphasize that from a methodological viewpoint these pro-
cedures are rather different from the off-line techniques discussed in Chapter 3. While the latter are based
on batch processing and hence require the entire experiment to be completed and all output data being col-
lected beforehand, we would now like to improve our knowledge about the underlying system while data
acquisition is still running. This is of utmost importance in applications where actions or decisions need
to be taken in the course of ongoing measurement, see also Section 4.3. Much of the background material
on filtering covered here is taken from standard textbooks such as [81, 60, 10]. References regarding more
advanced concepts will be given where appropriate.

4.1 Stochastic difference equations

4.1.1 Discretization

So far we have exclusively focused on continuous-time ODE models of the type (2.16). While such models
offer a natural description of many real world phenomena, triggered measurements as well as numerical

43
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treatment invariably require model formulations in discrete time. In the sequel we will hence mainly deal
with parameterized difference equations of the form

xk = gk−1(xk−1,ϑ), k ≥ 1
yk = hk(xk,ϑ).

(4.1)

The first expression is generally referred to as evolution equation, capturing the dynamics of the state
x ∈ Rn on a discrete time horizon tk = k∆t. Here, ∆t > 0 denotes a (constant) discretization step size
or sampling interval. The second relationship is called the measurement equation and yields an observable
model output. The assumption of yk being scalar has merely been made for the ease of notation. Most of
the facts to be presented generalize to the multiple output case in a straightforward manner. Equation (4.1)
constitutes a state space representation of the model. Again, the vector ϑ ∈ Rp lumps together a set of
constant model parameters that may be partially unknown. As in the previous chapter, the functions gk
and hk are assumed to be continuously differentiable with respect to both arguments at all time instants
considered.

Remark 21. The time-dependence of g and h implicitly covers possible influences of time-varying input
functions on the discrete system (4.1).

Several approaches have been proposed for transforming continuous-time models into their discrete-
time counterparts, see, e.g., [71]. Most of these mappings take the form of explicit integration schemes
familiar from numerical analysis, such as truncated Taylor series approximations or Runge-Kutta methods.
For instance, a simple Euler discretization yields

ẋ = g(t,x,ϑ)  xk = xk−1 + g(tk−1,xk−1,ϑ)∆t =: gk−1(xk−1,ϑ). (4.2)

The final discretization technique generally has to be selected according to the specific problem at hand,
taking into account computational burden as well as stability. In the special case of linear ODE systems,

ẋ = A(t,ϑ)x +B(t,ϑ) (4.3)

a particularly convenient choice is zero-order hold sampling [148]. By assuming that the matrices A ≡
Ak−1 as well as B ≡ Bk−1 are constant on the interval [tk−1, tk] we can derive the exact relationship

xk = Gk−1(ϑ)xk−1 + fk−1(ϑ), (4.4)

where
Gk−1 := exp (Ak−1∆t) (4.5)

and

fk−1 :=
(

exp (Ak−1∆t)

∆t∫
0

exp (−Ak−1τ)dτ
)
Bk−1 =

exp (Ak−1∆t)
(
I − exp (−Ak−1∆t)

)
A−1
k−1Bk−1. (4.6)

The last equality holds if Ak−1 is invertible.

4.1.2 Stochastic framework
Equation (4.1) provides a description of the process dynamics in the ideal context of an error-free model
structure as well as perfect measurements. In a more realistic setting, however, both the state and the
measurement equation are known only approximately. Uncertainties can result, for instance, from noisy
input and output measurement, modeling errors or external disturbances acting on the system. It is hence
necessary to complement the aforementioned deterministic model with a probabilistic model reflecting the
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aforementioned imperfections. For this purpose we introduce the (possibly nonlinear) stochastic difference
equation

xk = gk−1(xk−1,ϑ,wk−1), k ≥ 1
yk = hk(xk,ϑ, vk),

(4.7)

where wk and vk are mutually independent random variables with zero mean, usually referred to as process
(or plant) noise and measurement noise, respectively [153].

Remark 22. We stress the fact that several alternative frameworks have been put forward for capturing
uncertainty in this context, particularly imprecise probabilities and interval-valued noise descriptions. For
more details see, e.g., [88, 30].

The structure (4.7) motivates the following basic definition.

Definition 3. A discrete-time stochastic process is a family of random variables {xk} defined on a common
probability space, where the time k belongs to a discrete index set I (mostly, I = N or I = Z). A realization
of {xk} is referred to as sample path or time series.

For the sake of simplicity, no explicit distinction is made between the generating random processes
{xk} (or {yk}) induced by (4.7) and their realizations. The meaning will be clear from the given context.

Generally, we will postulate the existence of appropriate continuous probability density functions (pdfs)
p, describing the probability law of the random vectors xk and yk with respect to the standard Lebesgue
measure. At a specified time index k this reads, for instance,

xk ∼ pϑ(xk). (4.8)

For the sake of notational simplicity, we will omit the dependence of p on ϑ for the moment. Under
suitable regularity conditions the conditional density of xk given yk can be defined as

p(xk|yk) :=
p(xk, yk)
p(yk)

=
p(yk|xk)p(xk)∫
p(yk|xk)p(xk)dxk

. (4.9)

Here, the second equality sign denotes the well-known Bayes’ theorem. In the present context p(xk|yk) is
usually referred to as posterior density, while p(yk|xk) and p(xk) are the likelihood and the prior, respec-
tively. Note that it will be a tacit assumption in the sequel to always integrate over the entire domain of
respective random variable.

Using the above notation, the independence assumption on wk and vk translates to

p(wk|wl) = p(wk), k > l (4.10)

and similarly for vk. In light of the previous requirement it is customary to call {wk} a white random
sequence. Returning to (4.7) one can immediately see that given xk−1, xk depends only on wk, which
is independent of the previous states. Hence, Equation (4.10) ensures that the stochastic process {xk}
becomes a Markov process, characterized by the following defining property.

Definition 4. A discrete-time stochastic process {xk} is called a Markov process if the conditional pdf
satisfies

p(xk|xk−1, . . . ,x0) = p(xk|xk−1), k ≥ 1. (4.11)

Similarly, given xk the random variable yk defined via (4.7) will be conditionally independent of the
past states, hence

p(yk|xk, . . . ,x0) = p(yk|xk). (4.12)

Equation (4.11) has also been termed the general causality principle: the present state xk contains all
past information that has any impact on the future behavior of the process. Moreover, it states that Markov
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processes propagate uncertainty by means of the so-called transition densities p(xk|xk−1). In particular,
the marginal pdf of xk can be determined by virtue of the Chapman-Kolmogorov equation

p(xk) =
∫
p(xk|xk−1)p(xk−1)dxk−1, (4.13)

which is a reformulation of the law of total probability. It is precisely this last expression that is decisive
for inferring the statistical behavior of xk (and later also of ϑ), as it opens up a possibility for extracting
potentially informative indices such as E{xk}, var{xk} or associated confidence intervals.

A further generalization of the situation above emerges from the concept of a priori information, which
is introduced by additionally assigning a probability law to the initial state x0:

x0 ∼ p(x0) (4.14)

This pdf is called an initial prior and lumps together all probabilistic knowledge about the state of the
system before any observation has been made.

In summary, (4.7) turns out to be a special case of of the following general stochastic system.

Definition 5. A hidden (unobserved) Markov model is represented by the stochastic dynamics

x0 ∼ p(x0)
xk ∼ p(xk|xk−1), k ≥ 1
yk ∼ p(yk|xk).

(4.15)

Hidden Markov models have received widespread attention in the literature due to their adequate de-
scription of a broad spectrum of practically interesting stochastic processes. The general formulation (4.15)
will be instrumental for the treatment of the nonlinear filtering problem outlined in the next section.

4.2 Nonlinear filtering
This section provides an overview of nonlinear filtering theory for hidden Markov models as defined above.
It can by no means offer a complete exposition of all branches in this active area of system engineering
research, but rather serves as a survey on several existing techniques that appear useful in the given context
of physiological modeling and estimation. In this regard, we will adopt a practitioner’s viewpoint and de-
velop the underlying theory only to the extent relevant for this thesis.

Loosely spoken, the filtering problem amounts to computing a state estimate x̂k of the stochastic sys-
tem (4.7) from the collection of available output values Yk := (yk, . . . , y1) up to time k. The presentation
here will adopt a Bayesian perspective, which offers a unifying approach to nonlinear state estimation and
underpins the logic of various apparently distinct algorithms developed for this purpose. The central object
of interest within this framework is the conditional (posterior) probability distribution p(xk|Yk) which ac-
cording to the Bayesian paradigm can be seen as the complete solution of the nonlinear filtering problem
just introduced. This is due to the fact that p(xk|Yk) by definition embodies all accessible information on
xk up to time k.

Given p(xk|Yk), an obvious estimate for the state variable xk is the conditional mean

x̂k := E{xk|Yk} =
∫

xkp(xk|Yk)dxk, (4.16)

which can be shown to have minimal variance, see Lemma 2. In other words, x̂k is optimal in a minimum
mean squared error (MMSE) sense.
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Lemma 2.
arg min

x
E{‖xk − x‖22|Yk} = E{xk|Yk}. (4.17)

Proof. The assertion is proven using the fact that

E{‖xk − x‖22|Yk} = E{(xk − x)T (xk − x)|Yk}
= E{‖xk‖22|Yk} − 2xTE{xk|Yk}+ E{‖x‖22|Yk}
= E{‖x− E{xk|Yk}‖22|Yk} − ‖E{xk|Yk}‖22 + E{‖xk‖22|Yk}.

(4.18)

As the last two terms are independent of x the claim follows.

Moreover, x̂k is unbiased due to

E{xk − x̂k} = E{xk} − E{E{xk|Yk}} = 0, (4.19)

using the law of iterated expectations.

Remark 23. Other point estimates x̂k of xk are conceivable, such as for instance the maximum a posteriori
(MAP) estimate maximizing the value of p(xk|Yk). In the Gaussian case, both MMSE and MAP estimates
coincide.

4.2.1 Sequential Bayes filter
The main intention of this section is to deduce a recursion formula allowing for the sequential computation
of the desired posterior density p(xk|Yk). One of the primary motivations for devising such an iterative
update scheme is its natural real-time setting. Information can be processed on-line, i.e., as soon as a new
measurement yk becomes available. This feature clearly distinguishes nonlinear filtering from the off-line
estimation techniques discussed in Chapter 3 and renders it as a valuable tool for monitoring and tracking
problems, requiring an estimate of the state while the process is still running. We give the following
fundamental result [155].

Theorem 4.1. (Sequential Bayes filter) Consider a hidden Markov model (4.15). The conditional density
p(xk|Yk) of xk given the stacked observations Yk = (yk, . . . , y1) obeys the recursion

p(xk|Yk) =
p(yk|xk)
p(yk|Yk−1)

∫
p(xk|xk−1)p(xk−1|Yk−1)dxk−1. (4.20)

Proof. Using Bayes’ rule (4.9) we find that

p(xk|Yk)p(yk|Yk−1) = p(xk|yk, Yk−1)p(yk|Yk−1)

=
p(yk|xk, Yk−1)p(xk, Yk−1)

p(yk, Yk−1)
p(yk, Yk−1)
p(Yk−1)

= p(yk|xk, Yk−1)p(xk|Yk−1) = p(yk|xk)p(xk|Yk−1).

(4.21)

Here, the last equality is justified by the form of the measurement equation in (4.15). Thus,

p(xk|Yk) =
p(yk|xk)
p(yk|Yk−1)

p(xk|Yk−1). (4.22)

The denominator might be written as

p(yk|Yk−1) =
∫
p(yk|xk)p(xk|Yk−1)dxk, (4.23)

and can be seen as a normalization constant, ensuring that p(xk|Yk) integrates to unity. Moreover, from
Equation (4.13) and due to the fact that, given xk−1, the random variable xk does not depend on Yk−1, the
second factor in (4.22) can be expressed as

p(xk|Yk−1) =
∫
p(xk|xk−1)p(xk−1|Yk−1)dxk−1. (4.24)

Combining (4.22) and (4.24) hence yields the assertion.
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The importance of Theorem 4.1 stems from the fact that it establishes a sequential update mechanism
for the conditional density p(xk|Yk) as time proceeds from (k − 1) to k. Note that (4.20) resembles an
inherent predictor-corrector structure: p(xk|Yk−1) as in Equation (4.24) predicts the posterior density on
the basis of the last estimate p(xk−1|Yk−1) and the process equation reflected by the transition density
p(xk|xk−1). This is often called the time update. In a second step, the prediction is refined by means of
additional information provided by the measurement equation, which enters via p(yk|xk) (this is termed
the measurement update).

While the preceding theorem already encapsulates the conceptual solution of the filtering problem,
from a practical point of view Equation (4.20) is of limited use. The involved densities rarely admit a
closed analytical form and one therefore has to resort to approximations or special cases. In the following
subsections we will review some of the major findings in this context. The presentation is no doubt incom-
plete, as the aim can merely be to give a brief, however roughly self-contained overview of various relevant
results scattered in the literature.

4.2.2 Kalman filtering
The most important case of a stochastic dynamical system which lends itself to a tractable solution of the
filtering problem as given in Equation (4.20) are linear, Gaussian structures of the type

xk = Gk−1xk−1 + fk−1 + wk−1

yk = Hkxk + dk + vk.
(4.25)

It will be a general premise in this subsection to require that the state transition matrixGk is nonsingular for
all k and that {wk} and {vk} are Gaussian, white, zero-mean and have known symmetric positive definite
covariance matrices Qk > 0 and Rk > 0, respectively:

wk ∼ N (0, Qk)
vk ∼ N (0, Rk)

E{wkwT
l } = Qkδkl

E{vkvTl } = Rkδkl

E{vkwT
l } = 0.

(4.26)

Here, δ denotes the Kronecker delta function. Furthermore, we assume that the initial state x0 is in-
dependent of both {wk} as well as {vk} and that its initial prior is given by a Gaussian distribution
x0 ∼ N (x̂+

0 , P
+
0 ), where (we set Y0 := ∅)

x̂+
0 := E{x0|Y0} = E{x0}

P+
0 := cov{x0|Y0} = cov{x0} = E{(x0 − x̂+

0 )(x0 − x̂+
0 )T }. (4.27)

In the following, the superscript “+” will stand for an a posteriori (or corrected) estimate. The matrix P+
0

is a part of the problem statement and quantifies the uncertainty regarding the initial state of the system
before filtering starts. If the latter is perfectly known, then P+

0 is a zero matrix, i.e., P+
0 = O. Contrarily,

if we are completely ignorant regarding x0 we may set P+
0 = κI , with κ� 1.

As will be illustrated below, the special status held by systems of the form (4.25) stems from the
fact that the conditional densities indicated in (4.20) remain Gaussian in every iteration. Consequently, it
is sufficient to propagate the respective conditional mean vectors and covariance matrices in every time
step. In this special situation the sequential Bayes filter state will be finite, whereas in the general case
it is infinite. The solution scheme developed in Theorem 4.1 then reduces to the celebrated Kalman filter
recursions [84].

Corollary 2. (Kalman filter) Consider the linear, Gaussian system (4.25) and an initial prior p(x0) ∼
N (x̂+

0 , P
+
0 ). Under the assumptions stated above, the sequential Bayes filter (4.20) reads
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time update


p(xk|Yk−1) ∼ N (x̂−k , P

−
k )

x̂−k = Gk−1x̂+
k−1 + fk−1

P−k = GTk−1P
+
k−1Gk−1 +Qk−1

measurement update


p(xk|Yk) ∼ N (x̂+

k , P
+
k )

x̂+
k = x̂−k +Kk(yk −Hkx̂−k − dk)
P+
k = (I −KkHk)P−k (I −KkHk)T +KkRkK

T
k ,

where
Kk := P−k H

T
k (HkP

−
k H

T
k +Rk)−1 (4.28)

denotes the Kalman gain.

Proof. We start by computing the time update. Assume by induction that p(xk−1|Yk−1) ∼ N (x̂+
k−1, P

+
k−1).

Since the measurement equation is linear and wk−1 is Gaussian it holds that

p(xk|xk−1) ∼ N (Gk−1xk−1 + fk−1, Qk−1). (4.29)

Then, from (4.24) we have that

p(xk|Yk−1) =

1
K1

∫
exp

(
−1

2
‖xk −Gk−1xk−1 − fk−1‖2Q−1

k−1

)
exp

(
−1

2
‖xk−1 − x̂+

k−1‖2(P+
k−1)−1

)
dxk−1, (4.30)

where the indicated norm is defined as ‖x‖2A := xTAx for some symmetric positive definite matrix A and

K1 := (2π)n
(

detQk−1 detP+
k−1

) 1
2 . (4.31)

By applying the transformation Gk−1xk−1 + fk−1 =: z in the above integration we find that

p(xk|Yk−1) =

1
K2

∫
exp

(
−1

2
‖xk − z‖2

Q−1
k−1

)
exp

(
−1

2
‖z−Gk−1x̂+

k−1 − fk−1‖2(GTk−1P
+
k−1Gk−1)−1

)
dz, (4.32)

where the normalization constant now is given by

K2 := (2π)n
(

detQk−1 det(GTk−1P
+
k−1Gk−1)

) 1
2 . (4.33)

The fact is stressed that p(xk|Yk−1) as given (4.32) can be interpreted as the convolution

(p1 ∗ p2)(xk) =
∫
p1(xk − z)p2(z)dz (4.34)

of the densities p1 ∼ N (0, Qk−1) and p2 ∼ N (Gk−1x̂+
k−1 + fk−1, G

T
k−1P

+
k−1Gk−1), representing two

independent, n-dimensional Gaussian random variables. Since this convolution is well known to yield
the pdf of the sum of the corresponding random variables (see, e.g., [81, Example 2.15]), by taking into
account the addition theorem for Gaussian distributions we can thus conclude that

p(xk|Yk−1) ∼ N (Gk−1x̂+
k−1 + fk−1, G

T
k−1P

+
k−1Gk−1 +Qk−1) =: N (x̂−k , P

−
k ). (4.35)

The conditional mean x̂−k = E{xk|Yk−1} and covariance matrix P−k = cov{xk|Yk−1} represent the so-
called a priori (or predicted) estimates. Note that P−k will again be symmetric positive definite.
We now turn to the measurement update. Firstly, from the linearity of the measurement function we have
that p(yk|xk) ∼ N (Hkxk + dk, Rk). As a result, from (4.22) and (4.35)

p(xk|Yk) ∝ exp
(
−1

2
‖yk −Hkxk − dk‖2R−1

k

− 1
2
‖xk − x̂−k ‖2(P−k )−1

)
. (4.36)
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It can be shown that p(xk|Yk) ∼ N (x̂+
k , P

+
k ) is indeed Gaussian again. The proof of this assertion is

implicitly covered by the proof of Lemma 4 and will hence be omitted here. The interested reader is
referred to Remark 29. Assuming Gaussianity to hold, we can continue by exploiting the fact that

x̂+
k = E{xk|Yk} = arg max

xk

p(xk|Yk) = arg min
xk

(
‖yk −Hkxk − dk‖2R−1

k

+ ‖xk − x̂−k ‖2(P−k )−1

)
.

By differentiation with respect to xk the a posteriori estimate x̂+
k hence must fulfill

−HT
k R
−1
k (yk −Hkx̂+

k − dk) + (P−k )−1(x̂+
k − x̂−k ) != 0, (4.37)

which is equivalent to

x̂+
k =

(
HT
k R
−1
k Hk + (P−k )−1

)−1(
HT
k R
−1
k (yk − dk) + (P−k )−1x̂−k

)
. (4.38)

Using general matrix identities (see, for instance, [81, Appendix 7.B]) the last expression can finally be
simplified to

x̂+
k = x̂−k +Kk(yk −Hkx̂−k − dk), (4.39)

where
Kk := P−k H

T
k (HkP

−
k H

T
k +Rk)−1. (4.40)

For the purpose of deducing an update formula for the conditional covariance matrix we note that

xk − x̂+
k = xk − x̂−k −Kk(yk −Hkx̂−k − dk)

= xk −KkHkxk − (I −KkHk)x̂−k −Kkvk

= (I −KkHk)(xk − x̂−k )−Kkvk

(4.41)

and thus

P+
k = cov{xk|Yk} = E{(xk− x̂+

k )(xk− x̂+
k )T } = (I −KkHk)P−k (I −KkHk)T +KkRkK

T
k , (4.42)

where the fact has been used that vk is independent of xk.

Remark 24. It should be emphasized that several equivalent expressions exist for the posterior covariance
matrix P+

k = cov{xk|Yk}. However, the presented form is preferable from a numerical point of view as it
guarantees that P+

k will remain symmetric positive definite if the same property holds true for P+
0 .

The previous theorem provides explicit recursions for an iterative update of the conditional mean
x̂+
k = E{xk|Yk} and the conditional covariance matrix P+

k = cov{xk|Yk} by efficiently combining
noisy observations with predictions from the known dynamic model. In particular, x̂+

k is optimal in both
the MMSE and MAP sense.

The key essence of the previous theorem is that it re-derives the Kalman filter as a special case of the
recursive Bayes filter as introduced in Theorem 4.1. In fact, there is an abundance of several alternative
concepts which can be employed in order to obtain these recursions, including, e.g., orthogonal projections
or recursive least squares. The interested reader may consult [81, Ch. 7.3] for further details. In particular,
the derivation above fails to reveal another interesting property of the Kalman filter: if the requirement of
Gaussianity in the characterization of the noise sequences {wk} and {vk} is dropped, the Kalman filter can
still be shown to be optimal among all linear filters (i.e., filter structures using only linear combinations
of states and observations). A good review of Kalman filtering and its wide range of applications is given
in [148].

Remark 25. (Extended Kalman filter) Being confronted with a nonlinear system of the form

xk = gk−1(xk−1) + wk−1

yk = hk(xk) + vk
(4.43)
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the ideas of Kalman filtering can still be applied by linearization around the current estimate. More specif-
ically, if we define

Gk−1 :=
∂gk−1(x)

∂x
|x=x̂+

k−1
, fk−1 := gk−1(x̂+

k−1)−Gk−1x̂+
k−1, (4.44)

as well as

Hk :=
∂hk(x)
∂x

|x=x̂−k
, dk := hk(x̂−k )−Hkx̂−k , (4.45)

then Equation (4.25) constitutes a first order approximation of (4.43). Applying Corollary 2 to this new
system yields the so-called extended Kalman filter (EKF). While having received widespread attention in
the literature due to its simplicity and straightforward applicability to a vast number of practically interest-
ing filtering tasks, the EKF often suffers from serious convergence problems. For more details on this issue
as well as a fruitful modification we refer to [133, 102, 101].

4.2.3 Particle filtering
We now return to the nonlinear stochastic system (4.7), driven by possibly non-Gaussian, white noise se-
quences {wk} and {vk}. In this case, the conditional densities of the Bayes filter (4.20) are generally
not tractable in an analytical way and some alternative strategy has to be employed in order to implement
the associated recursions. With the advent of considerable computing power, particle filters (also referred
to as sequential Monte Carlo methods) have emerged as a flexible tool within this framework, capable of
handling any type of functional non-linearity in the state transition or measurement model. Moreover, they
can be applied to any specific distribution of process or measurement noise.

The intuitive logic underpinning particle filtering is to shift the focus in the sequential Bayes filter
from densities to samples. Note that these are essentially dual representations of the underlying probability
law. In particular, given the latter, we might re-create the former by a variety of approximation schemes,
ranging from histograms to kernel density estimates. This observation motivates the use of Monte Carlo
sampling methods for deriving the required prior and posterior densities in (4.20). As will be elaborated
below, particle filters aim at simulating a large number of possible state trajectories, propagating the desired
posterior density p(xk|Yk) in accordance with the incoming observations. Our account is primarily based
on [65, 89, 44]. An interesting coverage of recent theoretical and practical advances in the field of particle
filtering is given in [43].

Remark 26. As the aforementioned methods heavily rely on the assumption that the user is able to generate
random variates from quite general probability distributions, a review of the most prominent methods
stochastic simulation is given in Appendix 4.A.

A major ingredient in the theory of particle filtering is Monte Carlo integration, which aims at approxi-
mating high-dimensional integrals by re-interpreting them as expectations of certain random variables. For
the sake of illustration, let x denote a continuous random vector in Rn that admits a probability density
function p. Moreover, let {xj} be a sequence of independent samples identically distributed according to p.
Then, by the strong law of large numbers, for an arbitrary measurable function φ it holds that as m→∞,

1
m

m∑
j=1

φ(xj)→ E{φ(x)} =
∫
φ(x)p(x)dx (4.46)

almost surely, provided that the above expectation exists. For fixedm, the arithmetic mean on the left-hand
side of (4.46) hence can be seen as a finite sample approximation of E{φ(x)}. Equivalently,

p(x) ∼= 1
m

m∑
j=1

δxj (x) (4.47)

produces an empirical estimate of the respective pdf. Here, δ denotes the Dirac delta point measure.
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In the same spirit, particle filters attempt to approximate the complete posterior characterizing the Bayes
filter (4.20) at time k by a cloud of m� 1 points (or particles) {x+

k,1, . . . ,x
+
k,m}, viz.

p(xk|Yk) ∼= 1
m

m∑
j=1

δx+
k,j

(xk). (4.48)

Ideally, these points represent independent and identically distributed draws from p(xk|Yk). The represen-
tation in (4.48) might subsequently be used for assessing any statistical property of xk given the available
evidence Yk. For instance, the approximate posterior probability of xk falling in some region of the state
space is simply given by the relative frequency of particles within that region.

A convenient way to generate a collection of particles as sketched above is the classical sampling im-
portance resampling (SIR) or Bayesian bootstrap algorithm developed by Gordon et al. [65]. In the sequel,
we shall briefly discuss the decisive steps underlying this method. In general, the SIR filter inherits the
predictor-corrector structure of the sequential Bayes filter and can therefore again be split into a time up-
date (corresponding to a sampling stage) and measurement update (corresponding to a resampling stage).
As before, the superscripts “−” and “+” will refer to the associated prior and posterior densities, respec-
tively.

Starting with the time update, assume that at time (k − 1) we have at hand an ensemble of particles
{x+

k−1,1, . . . ,x
+
k−1,m} yielding, via (4.48), an empirical estimate of p(xk−1|Yk−1). In view of (4.24), the

prior p(xk|Yk−1) then is given by

p(xk|Yk−1) =
∫
p(xk|xk−1)p(xk−1|Yk−1)dxk−1

∼=

1
m

m∑
j=1

∫
p(xk|xk−1)δx+

k−1,j
(xk−1)dxk−1 =

1
m

m∑
j=1

p(xk|x+
k−1,j), (4.49)

which is a composition of the transition densities governing the state evolution in (4.15). Consequently,
a set of samples {x−k,1, . . . ,x−k,m} from the the prior density p(xk|Yk−1) can be generated by drawing its
members according to

x−k,j ∼ p(xk|x+
k−1,j). (4.50)

This completes the sampling stage. Subsequently, a swarm of posterior particles {x+
k,1, . . . ,x

+
k,m} follow-

ing

p(xk|Yk) =
p(yk|xk)
p(yk|Yk−1)

p(xk|Yk−1). (4.51)

can be simulated based on the asymptotic result given in the next lemma [149].

Lemma 3. Let {x1, . . . ,xm} denote a set of independent samples, identically distributed according to a
pdf s. Furthermore, let a second pdf π be given by

π(x) :=
r(x)∫
r(x)dx

, (4.52)

where r is an appropriately defined known function such that r(x) > 0 implies s(x) > 0. Then the
multinomial densityM{(xj , qj), j = 1, . . . ,m} placing mass

qj :=
r(xj)/s(xj)∑m
l=1 r(xl)/s(xl)

≥ 0 (4.53)

on xj will tend to π in distribution as m→∞.
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Proof. Let x ∼ M{(xj , qj), j = 1, . . . ,m} be a sample of the discrete distribution introduced above.
Furthermore, let A belong to the underlying σ-algebra and let χA denote the usual indicator function.
Then, using the strong law of large numbers,

Pr(x ∈ A) =
m∑
j=1

qjχA(xj)

=
1
m

∑m
j=1 r(xj)/s(xj)χA(xj)
1
m

∑m
l=1 r(xl)/s(xl)

m→∞−→
Es{ r(x)

s(x)χA(x)}
Es{ r(x)

s(x)}

=

∫
A r(x)dx∫
r(x)dx

=
∫
A
π(x)dx.

(4.54)

Remark 27. It is instructive to note that Lemma 3 exploits the general principle of importance sam-
pling [22]. Instead of generating realizations from a complicated (simulation-wise) density π as above, a
point mass approximation of the latter can also be produced by drawing samples xj ∼ s(x) following a
simpler importance (or proposal) density s and assigning an individual importance weight qj ≥ 0 to each
of these samples. Thus,

π(x) ∼=
m∑
j=1

qjδxj (x),
m∑
j=1

qj = 1. (4.55)

Evidently, the quality of this approximation heavily relies on the effective sample size, i.e., the number of
samples that have a significant weight associated with them. Particularly, if the high probability regions of
π and s are widely disjoint, only a few weights will be different from zero and thus the number of samples
substantially contributing to the above approximation is greatly reduced. In practice, the goal hence must
be to select s in order to resemble the target density π as closely as possible. Specifically, the “perfect”
choice s = π would yield a uniform weight distribution qj = m−1.

Returning to the situation after the time update (4.50), we might now straightforwardly apply the pre-
ceding lemma with the a priori particles {x−k,1, . . . ,x−k,m}, p(xk|Yk−1), and p(yk|xk)p(xk|Yk−1) tak-
ing the roles of {x1, . . . ,xm}, s, and r, respectively. Doing so shows that a set of posterior particles
{x+

k,1, . . . ,x
+
k,m} approximately following p(xk|Yk) can be simulated by drawing m independent samples

from the multinomial distribution

x+
k,j ∼M{(x−k,j , qj), j = 1, . . . ,m}, qj :=

p(yk|x−k,j)∑m
l=1 p(yk|x−k,l)

, (4.56)

which can easily be realized by exploiting Remark 30. This resampling step completes the measurement
update of the SIR filter.

The above selection stage is a major algorithmic ingredient, as it effectively avoids some degeneracy
problems associated with earlier particle filters. In order to help intuition, note that the weights qj repre-
sent the normalized likelihoods of the observed yk given x−k,j and might hence be interpreted as acceptance
probabilities for the a priori particles. Effectively, qj quantifies the extent to which the jth a priori par-
ticle is compatible with the observed data. Consequently, (4.56) ensures that a priori particles with high
probability of producing yk will be cloned, whereas particles that are unlikely to yield yk are discarded.
The previous mechanism hence adaptively concentrates particles in regions of high posterior probability
according to the incoming data.

Recapitulating, the considerations outlined above lead to the following generic version of the particle
filter. From the viewpoint of an efficient implementation it should be noted that both stages of the algorithm
can easily be parallelized.

Corollary 3. (SIR filter) Consider the general hidden Markov model (4.15) and a swarm of m prior par-
ticles {x+

0,1, . . . ,x
+
0,m} distributed according to p(x0). Then, an approximate set of m posterior particles

distributed according to p(xk|Yk) can be obtained by recursively repeating the following two steps.
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time update
{

For j = 1, . . . ,m
Simulate x−k,j ∼ p(xk|x+

k−1,j)
.

measurement update
{

For j = 1, . . . ,m
Resample x+

k,j according to Equation (4.56) .

Here, m is chosen as a trade-off between computational feasibility and estimation accuracy.

�

After resampling, for any measurable function φ we might directly infer E{φ(xk)|Yk} as well as
cov{φ(xk)|Yk} by forming the arithmetic mean and empirical covariance matrix of the samples φ(x+

k,j),
respectively. Equivalently, with (4.55) in mind an alternative choice is to use the non-uniformly weighted
estimator

Tφk :=
m∑
j=1

qjφ(x−k,j). (4.57)

It can be shown that the (asymptotic) variance of Tφk is smaller than the variance of the standard estimate
based on the resampled particles. This is intuitively reasonable, as the resampling procedure will always
degrade the diversity among the particles.

While Corollary 3 is the core of particle filtering, it is worth noting that several slightly different im-
plementations of this simple scheme have been proposed. For instance, taking into account Remark 27,
instead of executing a resampling step it is also possible to use properly weighted representations of the
form (4.55) for approximating p(xk|Yk). The weights qj are then carried forward in time by an sepa-
rate update scheme. This early variant has become known as the sequential importance sampling (SIS)
method [99].

Another idea is to use acceptance-rejection sampling for propagating prior to posterior particles. This
approach essentially replaces the measurement update mechanism implied by Lemma 3 by Lemma 6 in
Appendix 4.A and accepts a prior particle x−k,j as a posterior particle x+

k,j with acceptance probability

a
(
x−k,j

)
:=

p(yk|x−k,j)
sup
x
p(yk|x)

, (4.58)

cf. Remark 33. Here, p(xk|Yk) and p(xk|Yk−1) take the roles of pX and pZ in Lemma 6, respectively1.
In contrast to resampling, this technique provides exact rather than approximate samples of the posterior
distribution. A major drawback, however, is that the posterior sample size will generally be random and
decreasing. In fact, it can readily be verified using Remark 34 that given a prior sample of size m the
expected posterior sample size is mκ−1 ≤ m. One possible modification to get rid of this defect is to
generate new a priori particles from a continuous approximation of the discrete prior pdf. This is also
referred to as the regularized particle filter. Further details on the acceptance-rejection approach can be
found in [117].

Remark 28. The validity of Corollary 3 is essentially justified by virtue of asymptotical results based on
the strong law of large numbers. While this ensures the consistency of estimators of the form (4.57), it
gives little insight into their rate of convergence. Moreover, no assertions have been made regarding the
precision of the derived estimates for a finite number of particles. An excellent compendium of recent
thoughts in this context is [36], which also discusses almost sure convergence of the empirical posterior
distribution functions to the true ones.

Despite being the most general method available for nonlinear filtering, a major obstacle hindering
the usability of the particle filter is its computational burden. Sampling from high-dimensional spaces

1In particular, if the indicated supremum exists the required constant κ is given by κ = p(yk|Yk−1)−1 supx p(yk|x).
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as orchestrated in the time update above can be fairly inefficient and in order to arrive at a faithful point
mass approximation of p(xk|Yk−1) the number of particles will rise rapidly with the dimension of the state
space. As will be elaborated in the next section, efficient particle filters aim at alleviating this problem by
exploiting certain sub-structures in the respective process and measurement models.

4.2.4 Dual estimation: marginalized particle filtering
So far, in our study of stochastic dynamical systems of the form (4.7) we have limited ourselves to pure
state filtering, assuming the parameter vector ϑ to be known. Contrarily, the overall goal now will be to
devise schemes that permit to estimate xk and ϑ simultaneously. This is often termed the dual estimation
problem, see also [177]. Following common practice we shall adopt a rather pragmatic approach here:
instead of viewing ϑ as a static parameter vector, we impose artificial dynamics on the latter, modeling its
variation by a random walk

ϑk = ϑk−1 + ek−1. (4.59)

As above, the noise sequence {ek} is required to be zero-mean, white with positive definite covariance
matrices Ek ≥ 0 and independent of the system and measurement noise as well as of the initial condition
x0 ∼ p(x0). As in (4.14), all available prior information on ϑ is assumed to be captured by an initial
prior density ϑ0 ∼ p(ϑ0). Evidently, the new formulation (4.59) slightly modifies the original estimation
problem. However, it also enhances flexibility by allowing ϑ to be time-varying rather than fixed. This
often is a useful extension in the context of physiological modeling, as time-varying parameters in many
cases offer a more faithful description of reality, see Section 4.3 for instance.

By augmenting (4.7) with (4.59), the joint estimation problem can in principle be cast as a purely non-
linear state filtering task for the composite vector zk := (xk,ϑk), which might straightforwardly be treated
within the extended Kalman or particle filtering framework developed before (see also [177] for alternative
approaches). However, as has been noted at the end of the previous section, the usual limiting factor here is
the number of particles required to yield a reliable point mass representation of the involved densities. This
number will rise rapidly with the dimension of the state space and the resulting computational demand for
joint filtering based on zk can easily become prohibitive. A question naturally arising hence is whether for
a given sample size m particle filtering can be improved in terms of enhancing the accuracy of the derived
estimates.

In the sequel we will show how this goal can be achieved to some extent by employing variance reduc-
tion techniques. In the present context, these schemes are often summarized under the name of marginal-
ized or Rao-Blackwellized particle filtering [140, 45]. A common methodological feature of the corre-
sponding algorithms is that they rely on marginalizing out analytically tractable (linear) sub-structures in
the respective process and measurement models. These sub-structures might then be treated using exact
methods, e.g., the Kalman filter. The discussion here will be confined to one special class of models that –
although nonlinear in zk – exhibit a linear sub-structure in the states, i.e., systems of the form

xk = Gk−1(ϑk−1)xk−1 + fk−1(ϑk−1) + wk−1

ϑk = ϑk−1 + ek−1

yk = Hk(ϑk)xk + dk(ϑk) + vk.

(4.60)

The properties of the noise term ek are adopted from above, while {wk} and {vk} are as in Section 4.2.2.
For perspective, such systems often arise as a result of zero-order hold sampling of mass balance equations
in physiological modeling, see Section 4.3.

On order to proceed further, it is important to note that conditional on the parameter sequence {ϑk} the
stochastic difference equation (4.60) is a linear Gaussian system and can hence be subjected to the Kalman
filter recursions. Consequently,

p(xk|ϑk, Yk) ∼ N (x̂+
k (ϑk), P+

k (ϑk)) (4.61)
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might be computed in an exact manner. Quite naturally, an efficient algorithm for determining the desired
joint posterior p(zk|Yk) should be expected to take advantage of this feature. Effectively, the idea is to split
the original filtering problem into two parts, one accounting for the dynamics of the parameter vector ϑk
and one handling the state filtering procedure. For this purpose we will decompose p(xk,ϑk|Yk) as

p(xk,ϑk|Yk) = p(xk|ϑk, Yk)p(ϑk|Yk), (4.62)

according to Bayes’ rule. From (4.61), the first factor can be determined analytically by virtue of Corol-
lary 2. Therefore, particle filtering will only have to be applied for tracking p(ϑk|Yk), which is of lower
dimension than p(zk|Yk). Correspondingly, as in the proof of Theorem 4.1, we immediately deduce that

p(ϑk|Yk) =
p(yk|ϑk, Yk−1)
p(yk|Yk−1)

p(ϑk|Yk−1) =
p(yk|ϑk, Yk−1)
p(yk|Yk−1)

∫
p(ϑk|ϑk−1)p(ϑk−1|Yk−1)dϑk−1.

(4.63)
Invoking the particle filter, at time (k − 1) we start with a set of m particles {ϑ+

k−1,1, . . . ,ϑ
+
k−1,m} drawn

from p(ϑk−1|Yk−1), which are then propagated through the system dynamics of ϑk in order to yield a
priori particles {ϑ−k,1, . . . ,ϑ−k,m} approximately distributed according to p(ϑk|Yk−1), cf. Equation (4.50).

After a new measurement yk has been acquired, a posteriori particles {ϑ+
k,1, . . . ,ϑ

+
k,m} from p(ϑk|Yk)

can in principle be obtained by carrying out a resampling step as in Corollary 3. According to (4.63),
the density p(yk|ϑk, Yk−1) now takes the role of p(yk|xk) in (4.56). The likelihoods p(yk|ϑ−k,j , Yk−1)
required to form the weights

qj =
p(yk|ϑ−k,j , Yk−1)∑m
l=1 p(yk|ϑ−k,l, Yk−1)

(4.64)

can be obtained from following lemma.

Lemma 4. For systems of the form (4.60) with Gaussian noise sequences as defined above it holds that

p(yk|ϑk, Yk−1) ∼ N (Hk(ϑk)x̂−k (ϑk−1) + dk(ϑk), Hk(ϑk)P−k (ϑk−1)Hk(ϑk)T +Rk), (4.65)

where x̂−k (ϑk−1) and P−k (ϑk−1) denote the respective estimates from the Kalman filter.

Proof. We first deduce that

p(yk,xk|ϑk, Yk−1) = p(yk|xk,ϑk, Yk−1)p(xk|ϑk, Yk−1) = p(yk|xk,ϑk)p(xk|ϑk, Yk−1). (4.66)

By exploiting the structure of (4.60), the first factor is a Gaussian pdfN (Hk(ϑk)xk + dk(ϑk), Rk), while
the second factor is the Gaussian prior N (x̂−k (ϑk−1), P−k (ϑk−1)), characterizing the time update of the
Kalman filter. For notational brevity, we will omit the dependence on ϑ from now on. Following [140], we
note that

p(yk|ϑk, Yk−1) =
∫
p(yk,xk|ϑk, Yk−1)dxk =

1
K1

∫
exp

(
−1

2
‖sk −Hkx̃k‖2R−1

k

− 1
2
‖x̃k‖2(P−k )−1

)
dxk =

1
K1

∫
exp {·}dxk, (4.67)

where we have introduced the new variables sk := yk −Hkx̂−k − dk, as well as x̃k := xk − x̂−k , and

K1 := (2π)
n+1

2
(

detRk detP−k
) 1

2 . (4.68)

It can easily be verified that the exponent in (4.67) can be written as

{·} = −1
2
(
x̃Tk sTk

)
Vk

(
x̃k
sk

)
, (4.69)
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where the matrix Vk is given by block diagonalization as

Vk :=
(

(P−k )−1 +HT
k R
−1
k Hk −HT

k R
−1
k

−R−1
k Hk R−1

k

)
=
(
I −Kk

0 I

)T ((P+
k )−1 0
0 S−1

k

)(
I −Kk

0 I

)
. (4.70)

Here, P+
k :=

(
(P−k )−1 + HT

k R
−1
k Hk

)−1
and Kk :=

(
(P−k )−1 + HT

k R
−1
k Hk

)−1
HT
k R
−1
k can be shown

to yield the posterior covariance matrix and the Kalman gain of Corollary 2, respectively. Moreover, Sk is
given by

Sk :=
(
R−1
k −R−1

k Hk((P−k )−1 +HT
k R
−1
k Hk)−1HT

k R
−1
k

)−1
= Rk +HkP

−
k H

T
k , (4.71)

using the lemma of the inverse matrix2. As for the denominator in (4.67), note that

(
detRk detP−k

)−1 = det
(

(P−k )−1 0
0 R−1

k

)
= det

((
I Kk

0 I

)T (
I 0
−Hk I

)T ((P−k )−1 0
0 R−1

k

)(
I 0
−Hk I

)(
I Kk

0 I

))

= det
(

(P+
k )−1 0
0 S−1

k

)
=
(

detP+
k detSk

)−1
.

(4.72)

By combining (4.67), (4.69), (4.70), and (4.72) it can be concluded that

p(yk|ϑk, Yk−1) =

1
(2π detSk)

1
2

exp
(
−1

2
‖sk‖2S−1

k

)∫
1

(2π)
n
2 (detP+

k )
1
2

exp
(
−1

2
‖x̃k −Kksk‖2(P+

k )−1

)
dxk︸ ︷︷ ︸

=1

, (4.73)

which proves the claim.

Remark 29. Note, that the previous proof fills a gap in the justification of the Kalman filter recursions in
Corollary 2. Returning to Equation (4.36), the above argumentation indeed confirms that

p(xk|Yk) =
(∫

p(yk|xk)p(xk|Yk−1)dxk

)−1

p(yk|xk)p(xk|Yk−1) =

1
(2π)

n
2 (detP+

k )
1
2

exp
(
−1

2
‖x̃k −Kksk‖2(P+

k )−1

)
(4.74)

is Gaussian again.

The preceding lemma shows that the particle filter for joint state and parameter estimation in models of
the form (4.60) can essentially be implemented by running a stochastic bank ofm separate Kalman filters in
parallel, each one being associated with a single particle ϑk,j . This is made precise in the following pseudo
code, which alternates between Kalman filtering for the states and particle filtering for the parameters.

Corollary 4. (Marginalized particle filter) Consider a conditionally linear Gaussian system (4.60) and a
cloud ofm particles {ϑ+

0,1, . . . ,ϑ
+
0,m} distributed according to p(ϑ0). Let each particle be associated with

a Kalman filter tracking the posterior density

p(xk|Yk,ϑ+
k,j) ∼ N (x̂+

k,j , P
+
k,j), x̂+

k,j := x̂+
k (ϑ+

k,j), P
+
k,j := P+

k (ϑ+
k,j) (4.75)

2Provided that the involved matrices have compatible dimensions and that the indicated inverses exist, we have that (A +
BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1, see, e.g., [153]
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according to Corollary 2 and let each of these filters be initialized by the same tuple (x̂+
0 , P

+
0 ) for all

j. Subsequently, a set of particles {ϑ+
k,1, . . . ,ϑ

+
k,m} following p(ϑk|Yk) as well as the corresponding

posterior mean and covariance matrix as indicated in (4.75) can be obtained by iterating

time update



For j = 1, . . . ,m
Kalman filter
p(xk|ϑ+

k−1,j , Yk−1) ∼ N (x̂−k,j , P
−
k,j)

x̂−k,j = Gk−1(ϑ+
k−1,j)x̂

+
k−1,j + fk−1(ϑ+

k−1,j)
P−k,j = GTk−1(ϑ+

k−1,j)P
+
k−1,jGk−1(ϑ+

k−1,j) +Qk−1

Particle filter
Simulate ϑ−k,j ∼ N (ϑ+

k−1,j , Ek−1).
Calculate p(yk|ϑ−k,j , Yk−1) using Lemma 4.

measurement update



For j = 1, . . . ,m
Kalman filter
p(xk|Yk,ϑ−k,j) ∼ N (x̂+,−

k,j , P
+,−
k,j )

Kk,j := P−k,jH
T
k (ϑ−k,j)(Hk(ϑ−k,j)P

−
k,jH

T
k,j(ϑ

−
k,j) +Rk)−1

x̂+,−
k,j := x̂−k,j +Kk,j(yk −Hk(ϑ−k,j)x̂

−
k,j − dk(ϑ−k,j))

P+,−
k,j := (I −Kk,jHk(ϑ−k,j))P

−
k,j(I −Kk,jHk(ϑ−k,j))

T +Kk,jRkK
T
k,j

For j = 1, . . . ,m
Particle filter

Resample (ϑ+
k,j , x̂

+
k,j , P

+
k,j) ∼M{

(
(ϑ−k,j , x̂

+,−
k,j , P

+,−
k,j ), qj

)}
where the normalized likelihoods qj are defined as in (4.64).

�

Analogously to (4.57), at time k we can form the estimate

E{φ(xk,ϑk)|Yk} =
∫
φ(xk,ϑk)p(xk,ϑk|Yk)dxkdϑk

(4.62)=

=
∫
φ(xk,ϑk)p(xk|ϑk, Yk)p(ϑk|Yk)dxkdϑk

∼=
m∑
j=1

qjE{φ(xk,ϑ−k,j)|ϑ−k,j , Yk} := T̃φk .

(4.76)

Setting φ(xk,ϑk) = xk yields the approximate minimum least squares estimate

x̂k ∼=
m∑
j=1

qjE{xk|ϑ−k,j , Yk} =
m∑
j=1

qjx̂
+,−
k,j . (4.77)

Its covariance matrix is given by

cov{x̂k} ∼=
m∑
j=1

qj
(
P+,−
k,j + (x̂+,−

k,j − x̂k)(x̂+,−
k,j − x̂k)T

)
, (4.78)

where the fact has been taken into account that

E{(xk − x̂k)(xk − x̂k)T |ϑ−k,j , Yk}
= E{(xk − x̂+,−

k,j + x̂+,−
k,j − x̂k)(xk − x̂+,−

k,j + x̂+,−
k,j − x̂k)T |ϑ−k,j , Yk}

= P+,−
k,j + (x̂+,−

k,j − x̂k)(x̂+,−
k,j − x̂k)T .

(4.79)
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As has been stated at the beginning of this section, the primary motivation for performing the previous
marginalization steps in the case of conditionally linear Gaussian models is to improve the quality of the
derived state estimates by reducing their variance. In particular, for φ acting on the components of xk
only, an interesting central limit theorem can be established under mild assumptions. More specifically, as
m→∞ it can be shown that

m
1
2 (Tφk − E{φ(xk,ϑk)|Yk}) D−→ N (0,Σ)

m
1
2 (T̃φk − E{φ(xk,ϑk)|Yk}) D−→ N (0, Σ̃),

(4.80)

with Σ̃ ≤ Σ. Here, Tφk is the standard estimate for joint particle filtering of x and ϑ (cf. (4.57)) and D−→
denotes convergence in distribution. The interested reader may consult [33, Th. 3] for a rigorous proof of
this statement.

The appeal of (4.80) is that it provides a basis for comparing the efficiency of the algorithms given in
Corollary 3 and Corollary 4 for simultaneous state and parameter estimation in models of the form (4.60).
Accordingly, above a sufficiently large sample size m, marginalized particle filters will be superior to
crude particle filtering for the composite vector zk = (xk,ϑk) in terms of reducing the covariance of the
state estimate. This is due to the fact that p(ϑk|Yk) is of lower dimension than the original joint posterior
p(xk,ϑk|Yk). Hence, for a fixed number of particles, the quality of the corresponding point mass repre-
sentations to the true pdfs will be higher for p(ϑk|Yk) than for p(xk,ϑk|Yk).

The practical performance of the algorithm presented in Corollary 4 will be illustrated in the next
section. For general comparisons between simple and marginalized particle filtering we refer to [140, 141].

4.3 Breath gas analysis in anesthetic monitoring
This section serves to demonstrate some potential applications of real-time breath gas analysis in the field
of anesthesia. The focus will be on two specific monitoring tasks arising in everyday clinical practice
that can fruitfully be attacked by means of the methods developed in the previous sections. For a good
introductory text to anesthesiology we refer to [156].

4.3.1 Problem statement
The primary aim of anesthesia is to decrease the components of surgical stress response by providing am-
nesia/hypnosis (unconsciousness), analgesia (pain relief) and muscle relaxation (immobility). Anesthetic
drugs (agents) used for this purpose can roughly be divided into two major classes, characterized by their
route of administration.

Intravenous agents are widely used for rapid induction of anesthesia, short procedures and long-term se-
dation in the intensive care unit. A prototypic compound in this context is propofol (2,6-diisopropylphenol,
CAS number 2078-54-8), which is becoming increasingly popular due to its favorable procedural proper-
ties (including the possibility of rapid awakening and the reduction of post-operative nausea and vomiting).
A core task in intravenous anesthesia is the determination of the serum levels of the anesthetic agent, which
in turn are thought to be reflective of the decisive effect site concentrations in the central nervous system
(brain and spinal chord), see, e.g., [49]. The evolution of these internal tissue concentrations after a bolus
injection or during constant administration might be simulated a priori by developing physiologically based
pharmacokinetic compartment models, which also form the basis for automatic, target-controlled infusion
systems [162, 76]. While such models have proven to closely reproduce the desired agent concentrations
in a variety of situations, it would generally be desirable to correct these predictions in an on-line manner,
by using appropriate measurements reflecting the current in vivo levels.

In principle, direct serum measurements appear to be a proper means for this purpose, however, this
approach is of limited practicability for real-time applications due to the time-intensive analysis of blood
samples. As has been suggested in the specific case of propofol, continuous sampling and instantaneous
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analysis of breath during anesthesia might provide an effective remedy for this issue [70]. More specifically,
it has been pointed out by several authors that some correlation exists between the breath concentrations of
propofol (determined, e.g., by PTR–MS at m/z = 179) and the underlying serum levels [75, 112]. While
this observation certainly offers novel perspectives on real-time examinations of endogenous propofol dis-
tribution, several confounding factors have to be addressed before this methodology can be introduced into
routine clinical practice. Such factors for instance are the very low volatility (i.e., vapor pressure) of propo-
fol under standard conditions [75] as well as possible metabolization patterns in the pulmonary tract [37].

Inhalational or volatile anesthetics are administered for both induction and maintenance of anesthesia,
usually by virtue of a breathing circuit into which the agent is introduced. Prominent examples include
nitric oxide as well as a series of halogenated hydrocarbons, most notably isoflurane, desflurane or sevoflu-
rane. Despite their ubiquitous use in modern medicine, the underlying mechanisms by which these gases
mediate their anesthetic/amnesic effects are still poorly understood. It is commonly agreed upon that
inhaled anesthetics produce central nervous system depression by selectively blocking or enhancing the
function of ion channels governing general neurotransmission behavior. In this sense, a well-defined rela-
tionship between the volatile anesthetic partial pressure in the brain and the associated anesthetic response
can be expected [136]. Nevertheless, specified target site concentrations required to achieve a sufficient
depth of anesthesia are lacking so far. Consequently, intra-operative monitoring of the anesthetic state
usually rests on operational variables that can be accessed by direct measurement. A value of consider-
able interest in this framework is the minimum alveolar concentration (MAC), defined as the end-tidal
concentration of the agent at which 50% of the patients fail to respond to surgical incision. While the
MAC represents a convenient measure of the potency of the inhalant under study, it is clearly based on a
steady state concept. Indeed, during transient states following a modification of the inspired gas concen-
tration (e.g., induction, emergence or awakening/recovery phases) the end-tidal agent concentration will
often be a poor indicator for the concentrations in the central nervous system, see also Fig. 4.2. It hence
would be important to have at hand a more reliable prediction of volatile anesthetic levels in the brain [119].

A second hallmark of anesthesia is the need for a continuous assessment of physiological function,
including a wide spectrum of vital respiratory and hemodynamic parameters. Within an intra-operative
setting, ventilatory control by means of the anesthetic breathing system is a standard feature that primarily
aims at ensuring stable normocapnic conditions. Thus, artificial ventilation will automatically be adjusted
to maintain the target end-tidal carbon dioxide content selected by the anesthetist. Quite on the contrary,
perfusion (i.e., cardiac output Q̇c, defined as the volume of blood per unit time pumped by the heart) is a
much more intricate quantity to measure, particularly due to the inaccessibility of current stroke volumes.
It should be noted in this context that pulse or blood pressure generally represent insufficient surrogates
for cardiac output (as can be seen for instance during shock or in patients suffering from arteriosclerosis,
where little correlation exists between these parameters and total blood flow [28]). The appropriate de-
termination of cardiac output can be seen as one of the cornerstones for adequately combating circulatory
complications as well as for ensuring an adequate oxygen delivery to all tissues. However, most of the
conventional methods for pursuing this goal are either highly invasive (dye or thermal dilution) or cumber-
some (ultrasonic techniques, impedance cardiography).

An elegant way to circumvent these shortcomings is based on the estimation of pulmonary blood flow
Q̇p

3 from the measured breath dynamics of inhaled inert gases. Briefly, the logic underpinning this ap-
proach can be traced back to the famous Fick principle (see [52, 90] as well as [92] for a recent review),
stating that the uptake of a foreign, blood-soluble tracer gas during one single respiratory cycle must equal
the amount of that gas added to the blood flowing through the lungs. If we assume that inhalation and ex-
halation occurs from a closed bag of volume Vbag (which is smaller than the total lung capacity so that the
bag can be completely emptied within one inhalation) and with an initial tracer gas concentration Cbag(0),
this mass balance in its most simplified form reads

VbagCbag(0)− VbagCbag(t) = t Q̇pCa(t), (4.81)

3which is roughly equal to cardiac output Q̇c if one neglects the small intrapulmonary shunt fraction
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where t denotes the duration of the respiratory cycle,Cbag(t) is the concentration in the bag after exhalation
and Ca(t) is the arterial (end-capillary) concentration. Postulating that an immediate diffusion equilibrium
is achieved at the alveolar interface, we may claim by Henry’s law that the arterial concentration is given
by Ca(t) = CA(t)λb:air, where CA(t) is the alveolar (end-tidal) concentration and λb:air is the blood:gas
partition coefficient of the inert gas under scrutiny. With t, Cbag, and CA being measured, all the quantities
in Equation (4.81) except Q̇p can be assigned known values and so one can easily solve for the latter
in order to arrive at an estimate of the pulmonary blood flow. Several refinements of the above scheme
have been put forward, correcting, e.g., for anatomical dead space, shunts or wash-in/wash-out during
inhalation/exhalation [180, 59, 125].

It should be noted that the requirement of negligible mixed venous concentrations of the tracer gas is
central to the above technique. In particular, this excludes the use of endogenously produced compounds.
Moreover, the duration t of the test has to be sufficiently small in order to prevent recirculation. Typical
gases that are employed in this context are nitrous oxide, acetylene, freon or sulfur hexafluoride [105].

4.3.2 Anesthetic monitoring using the prototypic compound sevoflurane
It will be the primary scope of the next paragraphs to adopt the above rationale for describing a continuous
cardiac output monitoring scheme during general inhalation anesthesia. Not surprisingly, the role of the
soluble inert gas introduced before will be played by the volatile anesthetic itself, thus allowing for a direct
application of the proposed method within a conventional intra-operative setting. In particular, no addi-
tional instrumentation is involved. The aforementioned task clearly requires a simultaneous assessment
of the endogenous tissue concentrations of the agent, most importantly of its mixed venous blood levels.
These dynamics which will be estimated on-line from the observable exhalation kinetics of the volatile
anesthetic on the basis of physiological modeling as well as by exploiting the ensemble of filtering tools
described in Section 4.2. Specifically, such an approach proves to be suitable for the joint monitoring of
cardiac output and the desired effect site concentrations in the cerebral region as discussed before. Our
account is strongly influenced by the earlier demonstration in [28], where similar ideas have been outlined.
The presentation in the sequel will be centered on sevoflurane (see [122] for an extensive review), which is
a convenient choice in terms of clinical relevance, measurability and accessibility of experimental data.

Sevoflurane (CAS number 28523-86-6) is a highly fluorinated ether with a boiling point of 58.5◦C that
is usually delivered in gaseous form by variable-bypass vaporizers and administered to the patient via en-
dotracheal intubation or laryngeal mask insertion. Its widespread use in modern anesthesia stems, among
others, from the relative lack of airway irritation, the absence of pungency and the maintenance of hemo-
dynamic stability. The MAC is around 2% and typical inspired concentrations of sevoflurane for induction
and maintenance of surgical anesthesia range from 1–8% and 1.5–3%, respectively. The endogenous me-
tabolism is minimal and accounts for roughly 1–5% of the total dose absorbed, the rest being excreted
by exhalation [85]. From an operational point of view, it has been demonstrated that sevoflurane can be
detected in PTR–MS at m/z = 181 [160, 135], thus allowing for direct real-time measurements of the as-
sociated alveolar (end-tidal) concentrations. According to classical pulmonary inert gas elimination theory,
the low blood:gas partition coefficient λb:air = 0.6 [55] at body temperature suggests a high sensitivity of
these alveolar levels with respect to variations in ventilation and perfusion, thereby rendering sevoflurane as
an ideal choice for relating respiratory and hemodynamic events to changes in the observable breath output.

We shall adopt the usual compartmental approach in order to capture the tissue accumulation of sevoflu-
rane during the course of inhalation anesthesia, cf. Section 2.3. The systemic part of the model is similar
to previously developed physiologically based descriptions of sevoflurane pharmacokinetics [119, 95] and
incorporates three well-mixed functional units: a compartment representing brain tissue (for capturing the
target site concentrations as indicated above), a richly perfused tissue (rpt) compartment, lumping together
tissue groups with comparable blood:tissue partition coefficient λb:rpt ≈ 0.24 such as liver, kidneys and
muscle [55], as well as a buffer tissue compartment that acts as a potential reservoir for the lipophilic agent
sevoflurane. This last compartment mainly mirrors the substantial storage capacity of adipose tissue, as can
be anticipated from a high fat:blood partition coefficient of about 71 [55]. All three compartments receive a
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specified, constant share of cardiac output and are separated into an intracellular space and an extracellular
space (including the vascular blood and the interstitial space), whereby a venous equilibrium is assumed
to hold at these interfaces. The relevant blood:tissue partition coefficients are summarized in Table 4.1.
According to the discussion in the previous paragraph, it is assumed that the major route of sevoflurane
uptake and removal is respiration, governed by the alveolar ventilation V̇A. In particular, any metabolic
clearance is assumed to be negligible.

The lung is modeled by one single homogenous alveolar unit characterized by an averaged ventilation-
perfusion ratio close to one in normal healthy patients at rest. In particular, any pre- and post-alveolar
absorption and release mechanisms occurring in the conductive airways (e.g., due to interactions with the
tracheo-bronchial lining fluid, cf. Chapter 8) are neglected, which is a reasonable requirement for low water
soluble gases such as sevoflurane [12]. Since both venous admixture and alveolar dead space are higher
during general anesthesia than in the awake state, a constant shunt fraction qs = 0.1 and an alveolar dead
space fraction vad = 0.1 are incorporated into the model [105]. Pulmonary gas exchange is assumed to
be perfusion-limited, i.e., an instantaneous diffusion equilibrium is expected to be established between
end-capillary blood and the free gas phase. Correspondingly, the relationship between end-capillary con-
centrations Cc′ and alveolar levels CA is given by

Cc′ = CAλb:air. (4.82)

The model structure is presented in Fig. 4.1 and will be detailed in the following.

12

3.2 Model equations and a priori analysis

3.2.1 Derivation

In order to capture the gas exchange and tissue distribution mechanisms presented
above, the model consists of four different compartments. A sketch of the model
structure is given in Fig. 2 and will be detailed in following.
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Fig. 2 Sketch of the model structure. The body is divided into four distinct functional units:
bronchial/mucosal compartment (gas exchange), alveolar/end-capillary compartment (gas exchange), liver
(metabolism and production) and tissue (storage). Dashed boundaries indicate a diffusion equilibrium.

Model equations are derived by taking into account standard conservation of mass
laws for the individual compartments, see Appendix A.1.2. Local diffusion equilib-
ria are assumed to hold at the air-tissue, tissue-blood and air-blood interfaces, the
ratio of the corresponding concentrations being described by the appropriate parti-
tion coefficients, e.g., λb:air. Unlike for low blood soluble compounds, the amount of
highly soluble gas dissolved in local blood volume of perfused compartments cannot
generally be neglected, as it might significantly increase the corresponding capaci-
ties. This is particularly true for the airspace compartments. Since reliable data for
some local blood volumes could not be found, in order not to overload the model

Figure 4.1: Sketch of the sevoflurane model structure. The body is divided into four distinct functional
units: alveolar/end-capillary compartment (gas exchange), brain tissue (effect site), richly perfused tissue
and storage tissue (adipose tissue). Dashed boundaries indicate a diffusion equilibrium. Abbreviations
connote as in Table 4.1.

From the previous sketch and (4.82), the mass balance equation for the alveolar compartment reads

ṼA
dCA

dt
= (1− vad)V̇A(CI − CA) + (1− qs)Q̇c(Cv̄ − CAλb:air), (4.83)
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where CI denotes the inhaled sevoflurane concentration and ṼA = VA + λb:airVc′ is the effective alveolar
volume taking into account the amount of sevoflurane dissolved in capillary blood. Similarly, for the brain,
richly perfused and storage tissue compartment we find that

Ṽbr
dCbr

dt
= qbrQ̇c(Ca − λb:brCbr), (4.84)

Ṽrpt
dCrpt

dt
= (1− qbr − qst)Q̇c(Ca − λb:rptCrpt), (4.85)

and
Ṽst

dCst

dt
= qstQ̇c(Ca − λb:stCst), (4.86)

respectively. Here, the associated concentrations in mixed venous and arterial blood are given by the
weighted means

Cv̄ := qbrλb:brCbr + (1− qbr − qst)λb:rptCrpt + qstλb:stCst (4.87)

and
Ca := (1− qs)CAλb:air + qsCv̄, (4.88)

respectively. Moreover, the measured (end-tidal) sevoflurane concentration equals

Cmeasured = (1− vad)CA + vadCI. (4.89)

In order to test the adequacy of the above formulation for clinical purposes, we compared the resulting
model predictions to an ensemble of in vivo concentration profiles published in [119]. This data set com-
prises 11 ventilated patients undergoing mastectomy during administration of 3% sevoflurane over 25 min
and includes the resulting partial pressure profiles in inspired and end-tidal air as well as in arterial and
jugular venous blood. Particularly, the latter variable can be expected to closely mirror the cerebral accu-
mulation of the agent. Fig. 4.2 depicts the associated mean sevoflurane levels at 1, 2, 4, 9, 16 and 25 min
after the start of inhalation. Here, the percentages given in Fig. 1 of [119] were digitized and converted to
mmol/l by using a factor of 10/22.4 appropriate for standard conditions. Subsequently, blood concentra-
tions were derived by multiplication with the sevoflurane blood:gas partition coefficient λb:air = 0.6.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

[min]

[m
m

ol
/l]

 

 

inhaled end−tidal arterial jugular venous

Figure 4.2: Simulation of sevoflurane profiles in end-tidal air (Cmeasured, cf. Equation (4.89)), arterial
blood (Ca, cf. Equation (4.88)) and jugular venous blood (Cbrλb:br) during inhalation anesthesia. Dis-
crete points correspond to mean levels associated with the pooled data from 11 patients as measured by
Nakamura et al. [119].

For simulation purposes, alveolar ventilation and cardiac output were set to constant values of V̇A =
4 l/min and Q̇c = 4 l/min, respectively, which corresponds to data measured under comparable condi-
tions [95, 104, 105]. The inhaled concentration profile CI was obtained by linear interpolation of the data
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points in Fig. 4.2. By adopting the reference values from Table 4.1 and setting the initial value of each
compartmental concentration to zero, the simulated trajectories are in good agreement with the observed
data. It is instructive to note that in the induction stage of anesthesia the end-tidal concentration profile
of sevoflurane yields a poor representation of the underlying target site dynamics. Specifically, while the
former readily approaches the desired MAC of about 2%, the brain concentration Cbr is still in a transitory
phase.

For the purpose of treating the above model within the framework outlined in Section 4.2, note that
Equations (4.83)–(4.86) might be interpreted as a linear inhomogeneous ODE system (cf. Equation (4.3))

ẋ = A(u, ϑ)x +B(u) (4.90)

in the state variable x := (CA, Cbr, Crpt, Cst)T , which is dependent on physiological inputs u(t) :=
(CI(t), V̇A(t)) as well as on a time-varying parameter ϑ := Q̇c reflecting cardiac output. Particularly,
as has been pointed out above, the entries of u can be viewed as known or measurable quantities within
an intra-operative setting. Equation (4.90) together with the measurement equation (4.89) constitutes a
linear state space representation as introduced in Section 4.1. By employing zero-order hold sampling and
postulating stochastic dynamics for x and ϑ, one straightforwardly arrives at a discrete stochastic system
of the form (4.60), i.e.,

xk = Gk−1(ϑk−1)xk−1 + fk−1 + wk−1

ϑk = ϑk−1 + ek−1

yk = Hkxk + dk + vk.

(4.91)

Here, the expressions for G and f are given in Equations (4.5) and (4.6), respectively, while from Equa-
tion (4.89) one finds that yk := Cmeasured,k is the measured breath sevoflurane concentration, Hk :=
(1 − vad) (1, 0, 0, 0), and dk := vadCI,k. We assume that the plant noise sequences {wk} and {ek} as
well as the measurement noise sequence {vk} are Gaussian, white, zero-mean and have known symmetric
positive definite covariance matrices Qk, Ek and Rk, respectively. Additionally, we assign the priors

p(x0) ∼ N (0,O)

p(ϑ0) ∼ N (Q̇est
c , var{Q̇est

c }),
(4.92)

reflecting our information on the initial sevoflurane concentrations as well as on the initial cardiac output.
With these assumptions we may directly aim at the joint estimation of x and ϑ from the observable profile
of the breath sevoflurane concentration y, using the methodology presented in Section 4.2.4. Due to the
lack of appropriate in vivo data, the sequence of data points yk will be simulated from the undisturbed
system (4.90) by employing predefined profiles for Q̇c, V̇A and CI. These profiles are selected in order
to cover a wide spectrum of possible respiratory and hemodynamic behavior (see Fig. 4.3). Since we as-
sume that no sevoflurane is present in the body at the onset of anesthesia, the initial conditions are set to
x(0) = (0, 0, 0, 0)T .

Noisy data were created by applying additive Gaussian perturbations with fixed varianceRk = (0.005)2,
see the first panel of Fig. 4.4. The sampling interval is ∆t = 5 s, which roughly corresponds to the duration
of one respiratory cycle during normal breathing at 12 tides per minute. Subsequently, the marginalized
particle filter in Corollary 4 is applied to yield sequential estimates for the unobserved tissue concentrations
x and the underlying cardiac output ϑ. Following common practice, the plant noise covariance matricesQk
and Ek were tuned to ensure a satisfactory performance of the algorithm. In particular we set Ek = (0.3)2

as a tradeoff between short transition times (following, e.g., a step change in perfusion) and estimation
accuracy for the variable cardiac output. Fig. 4.4 summarizes the results of these calculations, based on
m = 300 particles. Here, the parameters of the prior density p(ϑ0) according to (4.92) were defined as
Q̇est

c =8 l/min and var{Q̇est
c } = (3)2. With these settings, the time required for one filter iteration spreads

around 1.3 s, which is well within the sampling interval introduced above.
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Figure 4.3: Profiles of cardiac output Q̇c, alveolar ventilation V̇A and inhaled sevoflurane concentration CI

used for the simulation.
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Figure 4.4: Simulated (black lines) and recovered (red lines) profiles of the breath sevoflurane concentration
Cmeasured, cardiac output Q̇c and brain concentration Cbr, using a marginalized particle filter with cloud
size m = 300.

The state and parameter estimates were calculated according to Equation (4.76) and faithfully repro-
duce their simulated counterparts. For perspective, if the cardiac output drops abruptly (e.g., as a result of
air embolism) the circulation must be restored within 4 min to prevent brain damage. As can be seen from
the figure above, such incidences appear to be trackable within a delay time that is sufficiently small for en-
abling proper intra-operative interventions. Moreover, the target site concentrations Cbr of sevoflurane are
recovered from the observable breath levels with reasonable accuracy. In this sense, the present approach
can potentially contribute to facilitating real-time assessments of the anesthetic state.
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While the above deliberations offer intriguing novel perspectives for anesthetic monitoring on the basis
of exhaled breath measurements, several aspects have to be investigated more deeply before this method
can become clinically accepted. In particular, it is clear that one of the main building blocks for a suc-
cessful implementation is the availability of a reliable physiological model for the internal concentration
profiles of the anesthetic under study. Consequently, additional experimental efforts, data gathering and
modeling attempts are required in order to extend the validity of simple models such as the one above over
a wider range of possible dynamics. Moreover, further insights into the quantitative relationships between
anesthetic depth and brain sevoflurane concentrations need to be gained. In this sense, the previous anal-
ysis should primarily be seen as a preliminary proof of concept, coupling the high frequency information
obtainable by breath gas analytical techniques with well-established tools from signal processing in order
to achieve a continuous monitoring of physiological processes.

Parameter Symbol Nominal value (units)

Concentrations

alveoli CA (mmol/l)

arterial Ca

mixed-venous Cv̄

brain tissue Cbr

richly perfused tissue (rpt) Crpt

storage tissue Cst

inhaled CI

Compartment volumes

alveoli VA 4.1 (l) [116]

end-capillary Vc′ 0.15 (l) [78]

brain Ṽbr 1.3 (l) [121]

rpt Ṽrpt 40 (l) [121]a

storage (fat tissue) Ṽst 15 (l) [121]

Fractional flows

brain qbr 0.135 [121]

storage (fat) qst 0.06 [121]

shunt fraction qs 0.1 [105]

alv. deadspace fraction vad 0.1

Partition coefficients

blood:air λb:air 0.6 [55]

blood:brain λb:br 0.46 [55]

blood:rpt λb:rpt 0.24 [55]

blood:storage tissue λb:st 0.014 [55]

Table 4.1: Basic model parameters and reference values for normal subjects during rest; acomprising
viscera and muscles according to Table 8.2 in that reference.

4.A Stochastic simulation
This appendix gives a brief overview of the theoretical foundations of stochastic simulation [40, 56, 61,
137], allowing for an efficient generation of discrete and continuous random quantities. Some of the ma-
jor theorems and algorithms necessary for a competent treatment of the subject will be presented in the
following. In order to keep the notation consistent with the previous sections, probability densities and
distribution functions will be denoted by p and P , respectively. Random variables and their associated
realizations are indicated by capital and lower case letters, respectively.
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4.A.1 Pseudo-Randomness
The starting point for every simulation scheme is a uniform random variate generator on the unit inter-
val [0, 1], capable of supplying a sequence of independent, identically distributed (iid) random variables
U1, U2, . . . ∼ U([0, 1]), i.e., the corresponding probability density functions p are given by

pUi(ui) = χ[0,1](ui) (4.93)

for all i, where χ[0,1] denotes the usual indicator function. This is a building block not trivially given
and much effort has been spent on the construction of random numbers using a deterministic computer.
However, since it is beyond the scope of this illustration to cover all the details related to the development
of such a source of randomness, its existence will be taken for granted. As an example, consider the
following recursive generator:

Definition 6. (Linear Congruential Generator, Lehmer 1951)
Let a,m ∈ N and a < m. Using an initial seed γ0 ∈ {1, . . . ,m− 1}, one constructs

γi+1 ≡ aγi (mod m), i ≥ 0, (4.94)

yielding γi ∈ {1, . . . ,m− 1}. Division by m produces a stream of so-called pseudorandom numbers

ui :=
γi
m
.

Of course, these ui form a completely deterministic and periodic sequence, but for largem and properly
chosen multiplier a (a typical choice is the Mersenne prime 231−1 and 75, respectively), they will constitute
a relatively satisfactory approximation of U1, U2, . . . ∼ U([0, 1]). It should be noted, however, that (4.94)
only defines a “minimal” standard and might not be adequate for serious applications. The interested
reader may consult [61] for an overview of the numerous modifications and refinements that have been
proposed. In any case, since the quality of nonuniform samples produced by one of the simulation routines
given in the following sections depends almost solely on the quality of the underlying uniform generator,
statistical tests like a Ljung-Box portmanteau test or a runs test [100, 27] should be used to examine the
pseudorandom numbers’ goodness-of-fit to the theoretical requirements.

4.A.2 General simulation principles
This section discusses some of the fundamental simulation principles from which many of the standard
sampling routines for one- and multi-dimensional distributions can be derived. Results are mainly collected
from standard works such as [40, 56, 61, 137].

Inversion

Lemma 5. (Inversion Lemma)
Let U ∼ U([0, 1]) and let P be an arbitrary distribution function on R. Then, the random variable X
defined by X := P−1(U), where

P−1(u) := min{x : P (x) ≥ u} (4.95)

has distribution function P . The expression P−1(u) is called the generalized inverse of P .

Proof. Firstly, since the minimum is attained by right-continuity of P , one has that P
(
P−1(u)

) ≥ u by
definition. Second, P−1

(
P (x)

)
= min{w : P (w) ≥ P (x)} ≤ x. Thus, for all (u, x) ∈ [0, 1] × R by

monotonicity of P it holds that
{P−1(u) ≤ x} = {u ≤ P (x)}

and hence
PX(x) = Pr(X ≤ x) = Pr

(
P−1(U) ≤ x) = Pr

(
U ≤ P (x)

)
= P (x),

the last equality being justified by the uniform distribution of U ∼ U([0, 1]).
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Correspondingly, given the explicit form of P−1, a quite universal simulation algorithm for one-
dimensional random variables can be described as follows.

Algorithm 3 (Non-uniform random variate generation via inversion)

1. Generate u ∼ U([0, 1]).
2. Compute x := P−1(u) as the realization of a random variable X having the desired distribution
function P .

Remark 30. A paradigmatic example for employing the previous algorithm are discrete random variables,
i.e., Pr(X = xi) = qi, i = 1, 2, . . ., with 0 ≤ qi ≤ 1 and q1 + q2 + . . . = 1. In this case, for the
distribution function P it holds that

PX(x) =
{

0 x < x1

q1 + . . .+ qi xi ≤ x < xi+1.

Considering (4.95), the condition

q1 + . . .+ qi−1 < u ≤ q1 + . . .+ qi (4.96)

implies that P−1(u) = xi and consequently X can be sampled by

x :=



x1 if u ≤ q1

x2 if q1 < u ≤ q1 + q2

...
...

xi if q1 + . . .+ qi−1 < u ≤ q1 + . . .+ qi
...

...

Indeed, formally one then deduces that

Pr(X = xi) = P(q1 + . . .+ qi−1 < U ≤ q1 + . . .+ qi) =
PU (q1 + . . .+ qi)− PU (q1 + . . .+ qi−1) = qi. (4.97)

From a geometrical point of view, the unit interval [0, 1] is partitioned into disjoint subintervals of length
qi, i = 1, 2, . . .. Subsequently, if u takes on a value in the ith subinterval, then x is set to xi. For this
reason, creating samples of discrete random variables by inversion is commonly referred to as sequential
search technique.

Remark 31. (Discrete uniform distributions) Sometimes it is most convenient to extract a sample value
x directly by analyzing (4.96). For example, let X ∼ U({1, . . . , N}) be a uniform distribution on
{1, . . . , N}, i.e., let Pr(X = i) = N−1 for all i. Equation (4.96) then is equivalent to the condition

i− 1
N

< u ≤ i

N

and thus x can be realized by setting x := bNuc+ 1.

Regarding continuous random variables, the second step in Algorithm 1 usually involves the numerical
solution of P (x) = u. This equation is typically solved by applying the Newton-Raphson-Method to the
function P (x)− u, which after choosing an initial guess x0 iterates

xl+1 = xl − P (xl)− u
p(xl)

until some stopping criterion is fulfilled. Assuming that the probability density function p is unimodal and
choosing x0 equal to this mode, convergence of the above iteration scheme is guaranteed by concavity of
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P (x)−u in [x0,∞). The prototype of a random variable fulfilling this condition is a Gaussian distribution
X ∼ N (0, 1). Although

PX(x) =
1√
2π

x∫
−∞

exp
(
−ξ

2

2

)
dξ

cannot be evaluated in closed form, the aforementioned method might be applied in order to generate an as-
sociated realization x by inversion. However, due to relative computational inefficiency of this scheme and
given the importance of the normal distribution, several specific simulation algorithms have been developed
(such as the Box-Muller or polar algorithm).

Remark 32. Let X ∼ N (τ ,Σ), i.e., X follows an n-dimensional normal distribution with mean τ and
covariance matrix Σ (required to have full rank). Thus, for the probability density function p it holds that

pX(x) =
(det Σ)−

1
2

(2π)
n
2

exp {−1
2

(x− τ )TΣ−1(x− τ )}.

By applying the transformation rule, for A ∈ Rn×n and b ∈ Rn it can easily be proven that

Z := AX + b ∼ N (Aτ + b, AΣAT ). (4.98)

As a result, as far as the simulation of X is concerned, if one can find A such that AAT = Σ, it suf-
fices to generate Xaux ∼ N (0, In) by simulating n independent draws from a one-dimensional Gaussian
distribution and to set

X := AXaux + τ ∼ N (τ , AAT ).

Since by definition Σ is symmetric and positive definite, A is practically obtained by Cholesky decom-
position. Hence, by means of property (4.98), the common multivariate normal distribution can easily be
generated.

Rejection

Rejection is a powerful, dimension-independent simulation principle based on the idea of selecting sub-
samples: instead of sampling from a “difficult” (simulation-wise) random quantity directly, one generates
values following a “simpler” distribution on the same domain. In a second step, a rejection rule determines
whether these proposed values are accepted as realizations of the desired target random variable. The logic
underlying this scheme relates to the next result [56], first given by von Neumann (1951) in a slightly
modified form.

Lemma 6. Let X and Z be two continuous random variables defined on the same domain I with densities
pX and pZ, respectively. Moreover, assume that there exists a finite constant κ such that for all x ∈ I it
holds that

pX ≤ κpZ. (4.99)

Then the conditioned random variable

Z∗ := Z|{U ≤ pX(z)/(κpZ(z))} (4.100)

with U ∼ U([0, 1]) independent of Z has pX as its density function.

Proof. By independence, U and Z have the joint density

pU,Z(u, z) = pU (u)pZ(z) =
{
pZ(z) 0 < u < 1, z ∈ I
0 otherwise.

Hence, by letting A := {(u, z) : u ≤ pX(z)/(κpZ(z))} we conclude that

Pr
(
U ≤ pX(Z)

κpZ(Z)

)
=
∫∫
A

pU,Z(u, z)dudz =
∫
I

∫ pX(z)
κpZ(z)

0

pZ(z)dudz =
∫
I

pX(z)
κ

dz =
1
κ

(4.101)
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and thus the joint density of U and Z given {U ≤ pX(z)/(κpZ(z))} reads

p(U,Z)|{U≤pX(z)/(κpZ(z))} =
pU,Z(u, z)

Pr
(
U ≤ pX(Z)

κpZ(Z)

) =

{
κpZ(z) 0 < u < pX(z)

κpZ(z) , z ∈ I
0 otherwise.

Computing the marginal density yields

pZ∗(z) =

pX(z)
κpZ(z)∫
0

κpZ(z)du = κpZ(z)
pX(z)
κpZ(z)

= pX(z), z ∈ I.

This sets the stage for the final algorithm:

Let X and Z be continuous random variables (vectors) defined on the same domain I with densities
pX and pZ, respectively and let U ∼ U([0, 1]) be independent of X and Z. Additionally, let κ (≥ 1) be an
identifiable constant such that

sup
x∈I

pX(x)
pZ(x)

= κ <∞. (4.102)

A sample x following X can then be obtained as follows:

Algorithm 4 (Non-uniform random variate generation via rejection)

1. Generate (u, z) from (U,Z) until u ≤ pX(z)
κpZ(z) .

2. Deliver x = z.

Remark 33. By interpreting a(z) := pX(z)/(κpZ(z)) ≤ 1 as acceptance probability, the rejection algo-
rithm can briefly be summarized in the following way: “Draw a realization z from a proposal density pZ
(usually referred to as envelope) and accept z with probability a(z), otherwise continue drawing.”

Remark 34. Let R be the number of trials until the pair (u, z) is accepted. From Equation (4.101) one
sees that

Pr(z accepted) = Pr
(
U ≤ pX(Z)

κpZ(Z)

)
=

1
κ
.

Hence, R follows a geometrical distribution with parameter κ−1 and so E{R} = κ iterations are required
on average to produce one realization x ∼ X. Efficiency, i.e., κ ≈ 1, can be achieved by choosing pZ
similar to pX.
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Abstract
A real-time recording setup combining exhaled breath volatile organic compound (VOC)
measurements by proton transfer reaction-mass spectrometry (PTR-MS) with hemodynamic
and respiratory data is presented. Continuous automatic sampling of exhaled breath is
implemented on the basis of measured respiratory flow: a flow-controlled shutter mechanism
guarantees that only end-tidal exhalation segments are drawn into the mass spectrometer for
analysis. Exhaled breath concentration profiles of two prototypic compounds, isoprene and
acetone, during several exercise regimes were acquired, reaffirming and complementing earlier
experimental findings regarding the dynamic response of these compounds reported by
Senthilmohan et al (2000 Redox Rep. 5 151–3) and Karl et al (2001 J. Appl. Physiol. 91
762–70). While isoprene tends to react very sensitively to changes in pulmonary ventilation
and perfusion due to its lipophilic behavior and low Henry constant, hydrophilic acetone
shows a rather stable behavior. Characteristic (median) values for breath isoprene
concentration and molar flow, i.e., the amount of isoprene exhaled per minute are 100 ppb and
29 nmol min−1, respectively, with some intra-individual day-to-day variation. At the onset of
exercise breath isoprene concentration increases drastically, usually by a factor of ∼3–4 within
about 1 min. Due to a simultaneous increase in ventilation, the associated rise in molar flow is
even more pronounced, leading to a ratio between peak molar flow and molar flow at rest of
∼11. Our setup holds great potential in capturing continuous dynamics of non-polar,
low-soluble VOCs over a wide measurement range with simultaneous appraisal of decisive
physiological factors affecting exhalation kinetics. In particular, data appear to favor the
hypothesis that short-term effects visible in breath isoprene levels are mainly caused by
changes in pulmonary gas exchange patterns rather than fluctuations in endogenous synthesis.
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Introduction

The basic requirement in real-time breath gas analysis is to
develop an experimental setup enabling the fast quantification
of volatile organic compounds (VOCs) in exhaled breath
as well as for the acquisition of additional physiological
variables in a synchronized, reproducible and non-invasive
way. The first part of this contribution provides an extensive
proposal on how to achieve this aim and documents the
necessary features. Adjoined to this paper, the second part
outlines a series of real-time exhaled breath measurements
during specified ergometer workload sequences which were
carried out with the purpose of reaffirming and complementing
earlier experimental findings in this area, e.g., reported by
Senthilmohan et al [1] and Karl et al [2].

Regarding the analysis of exhaled breath samples, we
limit ourselves to proton transfer reaction-mass spectrometry
(PTR-MS), which is a relatively new analytical technique
for determining concentration levels of volatile molecular
species down to ppt level on the basis of chemical ionization
[3, 4]. Due to its high sensitivity for a large variety of
trace gases commonly occurring in human breath, PTR-MS
has proven to be a valuable and rapid quantification tool
in breath-related VOC research [5, 6]. Depending on the
number of different mass-to-charge ratios considered, data
acquisition can be performed on a time scale of approximately
1 s, which theoretically offers the possibility of drawing
and analyzing several breath samples per exhalation cycle.
Hence, in contrast to other analytical methods such as gas
chromatography mass spectrometry (GC-MS), which often
require time-consuming preconcentration steps [7–11], PTR-
MS can be used for the measurement of continuous VOC
profiles in real time. This is particularly important for the
detection of metabolic effects manifesting themselves in short-
lived changes of certain marker compound levels [12–15].
It is advisable to complement such profiles with additional
physiological data influencing VOC concentrations: cardiac
output, which controls the rate at which trace gases circulate
from organs and periphery to the lung or alveolar ventilation,
which governs the transport of VOCs through the respiratory
tree. Combining the real-time capability of PTR-MS with
systems recording hemodynamic and/or respiratory factors
remains an ambitious task from an experimental point of view.
The two main difficulties in the development of a reliable and
robust real-time measurement tool are:

(a) a consistent integration of all sensor devices guaranteeing
synchronized data gathering,

(b) the standardization of the breath sampling procedure
itself.

While (a) is mainly an issue regarding adequate instrument
and software engineering, aim (b) is at the heart of exhaled
breath analysis and still a matter of ongoing debate [16].
A major concern here is to ensure the extraction of end-
tidal air, which can be implemented by flow- or CO2-
controlled sampling in order to selectively detect different
exhalation phases. Some approaches have been suggested to
prevent exhaled breath samples from being diluted with fresh

dead space air [17–19]: nevertheless, most of the real-time
experiments published in the literature use mixed-expiratory
breath samples. The same holds true for off-line breath
sampling, which traditionally is carried out by collecting and
storing the breath sample in some container prior to analysis
(e.g., Tedlar bags).

Motivated by this lack of a standardized breath sampling
procedure, a breath sampling device (not shown) has been
developed in our laboratory which serves to fill Tedlar bags
with alveolar air in a flow and/or CO2-controlled manner,
taking into account the onset of the alveolar plateau [20]
during exhalation phases. Here we present a generalization
of this method for automatic real-time sampling. In
addition, we describe a recording setup efficiently combining
hemodynamic as well as respiratory and VOC-related data
streams, and monitoring of these variables during ergometer-
induced workload scenarios.

Materials and methods

An experimental setup capable of measuring the multitude of
physiological signals mentioned above consists of five central
parts:

(A) a hemodynamical monitor measuring heart rate, heart
minute volume, blood pressure, etc,

(B) a spirometer measuring the volumetric flow rate when
breathing through a flow transducer of some form (e.g., a
head mask),

(C) a heated, chemically inert gas sample line leading from
the flow transducer to the mass spectrometer,

(D) a medical ergometer for imposing certain workloads on
the test subject,

(E) the PTR-MS for measurement of volatile compounds in
exhaled breath.

A schematic diagram of our setup is given in figure 1 and
will be described in detail in the following.

With regard to (A), a non-invasive hemodynamic analysis
system (Task Force Monitor (TFM), CNSystems, Graz,
Austria) was used to determine hemodynamic variables
on the basis of standard ECG leads and transthoracic
impedance cardiography (ICG). In particular, the device
allows the continuous recording of blood pressure and cardiac
output with beat-to-beat resolution, which is an essential
requirement for relating changes in VOC concentrations to
quick hemodynamic variations. This real-time capability
ranges among the primary reasons for preferring impedance
cardiography over other existing approaches for the
measurement of heart minute volume as discussed below.
Since the user interface of the TFM does not export the
corresponding parameter values sequentially, we included a
simple data server, sending the latest available data vector to
a specified TCP/IP port every second. ICG methodology for
determination of cardiac output has been validated against the
invasive gold standard method thermal dilution in a variety
of situations [21–23]; however, a comparison with healthy
test subjects during workload conditions is still lacking. On
the other hand, the bioimpedance approach has shown good
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Figure 1. Sketch of experimental setup, italic items correspond to accessible variables.

agreement with other non-invasive techniques for obtaining
heart minute volume at different exercise levels [24].

Respiratory flow is obtained by means of a Medikro
SpiroStar USB differential pressure sensor (Medikro Oy,
Kuopio, Finland). Inhalation and exhalation occur through
pre-calibrated, single-use flow transducer mouthpieces, which
can be connected to sterilizable or disposable silicone head
masks (Cortex Biophysik GmbH, Leipzig, Germany). This
enables the test subject to breathe freely through mouth
and/or nose while simultaneously reducing the risk of
hyperventilation. Although some condensation could occur
within the mask, this was not considered a critical issue: gas
samples are drawn from the axial mainstream through Luer
lock connecting sockets situated about 2 cm from the lips; so
possible loss of highly soluble VOCs can be neglected due
to the high flow. Based on the Bernoulli principle stating
that the constriction of a given airflow will cause a difference
in pressure which subsequently can be used to determine the
associated flow [25], the device delivers volumetric flow rates
(vf (mlBTPS s−1), i.e., corrected for body temperature and
saturation with water vapor) within the flow transducer with a
sampling frequency of 100 Hz. As will be illustrated below,
proper integration of this signal allows the efficient extraction
of actual tidal volume and breathing frequency. The Medikro
SpiroStar package comes with a DLL driver implementing
functions for immediate communication with the spirometer
hardware (initialization, data reading, etc), which can easily
be incorporated into any C-based development environment.

Gas sampling is accomplished by a 3 m long, 1/4′′

Teflon tube which is heated using an isolated heating wire
(TNI Medical, Freiburg, Germany). The heating is necessary
to avoid condensation of water vapor from exhaled breath
within the sample line: condensed water droplets would attract
hydrophilic compounds, thus depleting the gas sample and
leading to erroneous measurement results. More specifically,

sensorCO2

drift tube

(1)

(2)

(3) (4) (5)

(6)

pressure
regulator

Figure 2. Inlet-flow architecture of the PTR-MS: (1) breath source,
(2) vacuum pump, (3) needle valve, (4) pressure control point
(0.655 bar), (5) drift tube, and (6) CO2 sensor.

care was taken to ensure that temperature is kept well over
40 ◦C along the entire length, thereby guaranteeing that no
water condensation occurs. The gas sample line can be
connected to the spirometer flow transducer by a metal Luer
lock.

Exercise tests are carried out on a computer-controlled,
semi-supine medical ergometer (eBike L, GE Medical
Systems, Milwaukee, USA) operating at constant levels of
power independently of the pedal speed. The supporting
bed stabilizes the torso of the volunteer thereby reducing
movement artifacts appearing in the acquired physiological
signals. The longitudinal tilt can be adjusted from 45◦ during
normal operation to 0◦ (supine position).

PTR-MS setup

Here we give a short description of the high-sensitivity
PTR-MS used in our laboratory (Ionicon Analytik GmbH,
Innsbruck, Austria); see figure 2. The breath source (1),
e.g., a Tedlar bag or a volunteer breathing into a real-
time sampling system as described above is connected to
a heated Teflon bypass used to direct the sample gas from
the breath source to the outside air by means of a vacuum
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pump (2). The corresponding flow can be adjusted using a
needle valve (3). Assuming ambient pressure conditions in
(1), a pressure regulator implemented along the bypass keeps
pressure levels at the branching point (4) at a constant value of
0.655 bar, thereby guaranteeing stable pressure conditions of
approximately 2.3 mbar in the drift chamber of the PTR-MS
(5), which is connected to (4) via a 1/16′′ capillary heated up
to 50 ◦C.

As has been described extensively elsewhere [3, 4], within
the drift chamber, compounds with higher proton affinities than
water are ionized by reacting with hydronium ions (H3O+)
originating from a hollow cathode ion source adjoining the
drift tube. The underlying reaction here is

H3O+ + M → MH+ + H2O,

i.e., reactant gas particles, M, are protonated to give product
ions, MH+, which are then separated according to their
distinctive mass-to-charge ratios (m/z) by a quadrupole mass
spectrometer. Finally, an ion detection system measures
count rates i(H3O+) and i(MH+), which can be converted
to concentration levels (parts per billion (ppb)—parts of the
compound in 109 parts of air) of the compound in question by
taking into account substance-specific reaction rates as well as
possible fragmentation patterns [26, 27]. The PTR-MS control
software provides the count rates associated with the mass-to-
charge ratios under study as well as the reaction conditions,
i.e., drift voltage (600 V), pressure (2.3 mbar) and temperature
(52 ◦C) within the drift chamber. Again all available data
are sent to a predefined TCP/IP port for subsequent storage.
In our experiments, we limited ourselves to the following six
mass-to-charge ratios (corresponding dwell times are given in
brackets):

• m/z 21 (18O isotope of the hydronium primary ions H3O+)
(500 ms),

• m/z 37 (protonated water dimer, a precursor ion) (2 ms),
• m/z 18 (NH+

4 which—when produced in the hollow
cathode-–acts as a parasitic precursor ion, adjusted to be
below 2% of H3O+) (10 ms),

• m/z 32 (O+
2, a parasitic precursor ion, adjusted to be below

2% of H3O+) (10 ms),
• m/z 59 (protonated acetone) (200 ms),
• m/z 69 (protonated isoprene) (200 ms),

resulting in a total cycle duration of about 1.5 s. The
first two mass-to-charge ratios are necessary for the correct
quantification of acetone and isoprene, which we implicitly
assume to be the only VOCs contributing to the associated
m/z signal [27, 28]. Calibration for these two compounds with
different levels of water vapor content was carried out either
manually (in the case of isoprene) or using a Gaslab gas mixing
unit (Breitfuss Messtechnik GmbH, Harpstedt, Germany) [27].
In particular, the presented concentration levels are determined
with respect to the usual water vapor content in exhaled breath
of about 6%. Slight variations of water content in the drift tube
due to fluctuations in the amount of water clusters originating
from the source were assumed to be negligible. For further
details regarding calibration factors and fragmentation issues,
we refer to the ‘most abundant’ approach as described in
[29]: the corresponding calibration coefficients for isoprene

and acetone were 0.95 and 0.79, respectively, calculated using
the nominal reaction constant 2.0 × 10−9 cm3 s−1 and an E/N
ratio of ∼126 Td.

Due to its low proton affinity, carbon dioxide cannot be
measured by PTR-MS. As will be discussed in the following
section, CO2 content serves as a well-understood control value
[30] for assessing the extraction quality of breath gas samples.
We, therefore, included an infrared CO2 sensor (AirSense
Model 400, Digital Control Systems, Portland, USA) in our
setup (cf figure 2 (6)). Particularly, by placing the sensor
behind the pressure controlled branching point, we are able to
determine concentrations independently of ambient pressure.
Calibration was done with test gas consisting of 5% CO2

in synthetic air (Linde Gas GmbH, Stadl-Paura, Austria).
Due to limited flow through the bypass, the CO2 sensor in
the PTR-MS acts as a mechanical low-pass filter, with a
measurement-induced delay of approximately 45 s. Current
CO2 concentration is appended to the PTR-MS data vector
after each measurement cycle.

Standardized real-time breath sampling

Common measurement practice in breath gas analysis tacitly
makes use of the Farhi equation (cf equation (1), later in
this text), which states that—assuming constant respiratory
and hemodynamic flow, e.g., during resting conditions—
alveolar concentrations of blood-borne endogenous VOCs
are proportional to their respective concentrations in
mixed venous blood and therefore—by taking into account
partition coefficients—to tissue levels. This makes alveolar
concentration the decisive value in the quantification of blood-
borne volatile species. However, the extraction of pure
alveolar air is hampered by several obstacles, the major ones
being mixing with (fresh) anatomic dead space volume as
well as exchange in the conducting airways. The latter
effect mainly relates to highly soluble substances interacting
with mucus linings and will be discussed in conjunction
with acetone measurements in the experimental section. In
contrast, VOCs with low blood solubility (e.g., isoprene with
a Henry constant of ∼0.029 M atm−1 [2, 31]) originate almost
exclusively from the alveolar blood–gas exchange, resulting
in drastically reduced dead space concentrations. Alveolar
levels of such molecular species are thus best reflected by
end-tidal concentrations, i.e., it is recommendable to discard
the first portion of exhaled breath in the analysis process.
In the present framework, this suggests that any real-time
extraction procedure should allow breath to be conducted to
the PTR-MS inlet only during the end-tidal fraction of each
exhalation phase. In particular, this strategy actively prevents
room air from being physically sampled during inhalation,
thereby simplifying data evaluation (no exhalation tracking is
required).

One possible realization is the implementation of an
automatic shutter or valve along the gas sample line, cutting
off the connection between the mass spectrometer and the flow
transducer during other time periods (cf figure 1). During valve
closing times the sample line then must serve as a sufficiently
large buffer volume in order to eliminate potential problems
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Figure 3. Example of the spirometer algorithm.

induced by substantial pressure fluctuations within the drift
chamber due to continuous bypass deflation by the vacuum
pump (cf figure 2). For a fixed sample line length, this amounts
to manually adjusting the bypass flow in such a way that two
factors are balanced:

(a) bypass flow should be high enough to minimize transport
time from the flow transducer to the drift chamber (i.e., to
minimize analysis delay)

(b) bypass flow should be low enough to avoid running into
bypass vacuum during valve closing times.

Particularly, in our case empirical optimization leads to
an analysis delay of approximately 10 s. Consequently, about
three subsequent end-tidal phases are mixed in the sample line
during normal breathing. Similarly to CO2 data, the sample
line thus represents a mechanical low-pass filter for the count
rates delivered by PTR-MS, leading to a slight smoothing
of the observed signal. The aforementioned standard setup
represents a good trade-off for most test subjects, limiting
excessive drift chamber pressure drops to a few isolated cases
per measurement sequence. Persons exhibiting very shallow,
sustained breathing patterns can be covered by further reducing
bypass flow, which, however, leads to a prolongation of
analysis delay.

Software algorithms

In the following, a C++ interface PROCESS FLOW for
consistent on-line shutter control and calculation of respiratory
variables is presented. The interface continuously provides
tidal volumes, alveolar ventilation and valve opening/closing
times on the basis of the signal obtained via the spirometer
hardware driver (see the above). More specifically, the
volumetric flow rates vf (t) are processed sequentially
according to two basic heuristics, as shown in figure 3.
First, we want to neglect small fluctuations due to the
movement of the head mask or the spirometer’s pressure
tube. Valid inhalations/exhalations are therefore detected
by the first time instant t∗ after a zero crossing such
that vf (t∗) is smaller/greater than a user-selected threshold
and the integral from the last baseline crossing to t∗ (i.e.,
the total volume inhaled/exhaled so far) is greater than
a predefined dead space volume (representing anatomical

dead space and flow transducer volume, i.e., approximately
200 mlBTPS [32]). Subsequently, the last zero crossing
stored is accepted as the starting point for the current
inspiration/expiration phase. Second, if two consecutive
inhalations/exhalations occur without at least one valid
exhalation/inhalation in between (being the most common
non-regular respiratory maneuver during normal breathing),
these multiple inhalations/exhalations are treated as one single
inhalation/exhalation.

As soon as a new volumetric flow rate is available it
has to be decided whether the valve should be open or
closed. A useful rule here is to consider a certain modifiable
percentage (say 50%) of the median of the preceding three
or five exhalation times. This is motivated by the following
observation: during regular breathing, after half of the total
exhalation time has passed it seems safe to assume that only
end-tidal air is being exhaled. If the breathing pattern does
not change, a viable shutter regime thus opens the valve if the
following three flow-related conditions are fulfilled:

(1) a valid exhalation phase has been identified,
(2) 50% of the last exhalation time has passed since the

starting point,
(3) vf (t) is greater than a user-selected minimal flow vfmin.

The last item accounts for slightly delayed electronic
valve response, so we can guarantee actual valve closing to
be completed before the onset of inhalation. As a slight
generalization of the second requirement we will consider a
function of the preceding n exhalation times rather than only
the last single value; it is well known that the median of n
values is a robust average estimator, which discards outliers
in the data. Consequently, computing the median of the last
few exhalation times will filter out extremely short or long
exhalation phases caused by coughing, etc, thus maintaining
a proper valve control after such breathing events. Figure 3
summarizes the aforementioned features of the algorithm. A
commented version of the C++ interface is available under
http://realtime.voc-research.at.

During phase (1), the flow sensor delivers negative
volumetric flow rates indicating the onset of an inhalation
phase. However, inhalation is only detected if vf is below a
predefined threshold, and if the inhaled volume (A) exceeds
the specified dead space volume VD ∼ 200 mlBTPS. The
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Figure 4. Comparison between real-time (time resolution ∼60 ms) and PTR-MS CO2 data during a 75 W ergometer challenge starting at
300 s and ending at 650 s; the measurement-induced delay of the PTR-MS CO2 sensor of about 45 s is readily discernible.

filled circle in figure 3 marks the first time instant t∗ after a
zero crossing where these two requirements are fulfilled. The
next zero crossing terminates the actual inhalation segment.
Exhalation is identified analogously, indicated by the filled
square. The corresponding time instant guarantees the end
of the preceding inhalation phase and is associated with two
events:

(a) The integral (= area under the curve vf (t)) calculated
during the last inhalation phase is accepted as total
inhalation volume VT .

(b) We have arrived at the first possible valve opening time.

However, as explained above, the shutter will usually still
remain closed until a user-defined percentage of the median
of the last preceding exhalation times has passed since the
start of exhalation. This requirement can be seen as an
additional precaution to avoid the dilution of breath samples
in the presence of inter-individually varying dead space air.
Then the valve will be open at each time instant where vf

is greater than vfmin (∼20 ml s−1, not indicated in figure 3).
As soon as the next zero crossing is encountered, the shutter
will be closed until the three requirements stated above are
fulfilled again. The detection of a valid inhalation after a valid
exhalation in phase (2) completes the previous breath cycle
and is characterized by the following updates:

(a) determination of the preceding exhalation time,
(b) determination of the duration of the preceding breathing

cycle,
(c) calculation of the current alveolar ventilation V̇A (mlBTPS

min−1), i.e., the flow effectively taking part in pulmonary
gas exchange by the usual formula [30]

V̇A = f (VT − VD),

where the breathing frequency f can be extracted from
(b). Thereafter, VT as well as V̇A are sent to a specified
TCP/IP port. The current breathing frequency can be
recovered from these two values by inverting the formula
given above. The algorithm moreover accounts for possible
multiple inhalation/exhalation phases as sketched in phase

(2) and phase (3). Accordingly, if two inhalation segments
are identified without a valid exhalation in between, the two
corresponding inhalation volumes are added to give VT at the
detection of the next exhalation. Similarly, in phase (3), two
expiration segments occur without being separated by a valid
inhalation. Hence, the corresponding exhalation times will be
merged in further calculations. However, valve control still
applies separately to each exhalation phase.

We now have at hand a real-time valve control
algorithm guaranteeing the sampling of end-tidal air during
the entire measurement sequence while simultaneously
computing inhalation volumes, breathing frequency and
alveolar ventilation. The shutter is implemented by a Teflon
valve (Parker, Fairfield, USA), heated to avoid condensation
and placed near the mouth to minimize dead space volume.
Opening and closing is accomplished by a standard serial
interface realizing the actual status information at each time
instant provided by the C++ interface PROCESS FLOW.
Preliminary validation of the present sampling scheme was
done by comparing the CO2 content delivered by the additional
sensor in our previously described PTR-MS setup with
independent continuous CO2 data simultaneously acquired by
means of an IRMA infrared probe (PHASEIN AB, Danderyd,
Sweden); cf figure 4. Levels clearly correspond to end-tidal
phases, reconfirming the capability of the sampling regime
to exclusively extract the last segment of exhaled breath.
Alternatively, automatic identification of an end-expiratory
phase as well as associated sampling procedures could also
be based on any respiratory signal approximately proportional
to the aforementioned flow rates. Natural candidates here
are CO2 fraction (by defining a threshold detecting alveolar
air), temperature (thermistor sensors) for sleep laboratory
applications or even PTR-MS signals themselves as suggested
in [18]. In any case, the limiting factors will be patient
convenience, possible signal delay and a sampling frequency
which necessarily is much higher than the normal breathing
frequency, so the adequacy of the underlying method strongly
depends on the experimental setup considered. Preliminary
comparisons between a hypothesized control algorithm taking
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CO2 data with breath-to-breath resolution and the present
flow-based scheme suggest good agreement between the two
methods.

Data acquisition

Regarding data acquisition, a simple recording tool (RETBAT:
REal Time Breath Analysis Tool) was implemented as
a MATLAB graphical user interface. The software
can be compiled to be used as a standalone executable
without installation of the MATLAB main application. It
asynchronously reads in PTR-MS-, spirometer- and TFM-
related data from the aforementioned TCP/IP connections and
displays them in real time. Synchronization is done on the
basis of available TFM data, which are updated every second.
More specifically, as soon as RETBAT receives the actual
TFM data vector it accepts the latest available spirometer
and PTR-MS data points as current values. The reason for
letting the TFM application act as a timer is that we want the
data collection to run in parallel with the specified ergometer
workload scenario which is set by a control application running
on the TFM PC. Thus, sampling with RETBAT is fully
independent of local system time, i.e., the software can be
executed on any network-authorized laboratory PC without
prior time synchronization.

Before starting the workload scenario, the user has to
provide measurement conditions such as room temperature,
ambient pressure and room air (background) count rates of
the mass-to-charge ratios under study. The latter could be
used for corrective purposes; however, generally the levels
are low enough to be neglected in the case of isoprene and
acetone [27, 28]. After a plausibility check of the provided
values, the received physiological data are plotted sequentially
and can be explored in real time by means of the MATLAB
plotting tools. Particularly, the count rates of m/z 59 (acetone)
and m/z 69 (isoprene) are immediately converted to ppb on
the basis of measured drift tube temperature and pressure as
described previously. Finally, recorded data will be corrected
with respect to the time response delays discussed before and
saved to a predefined MATLAB structure which can further
be exported to EXCEL. In particular, count rates and ppb
levels corresponding to time instants where drift chamber
pressure dropped below 2.2 mbar due to excessive shutter
closing times (see the above) are considered as missing values.
This threshold of 2.2 mbar was chosen on the basis of a
maximum tolerable variability of room air concentrations
during artificially induced pressure fluctuations.

Experiments

We concentrated our efforts on two compounds, which have
received wide attention in the field of exhaled breath analysis:
isoprene and acetone. The reason for this is twofold.
First, we wanted to generate comparable data sets in order
to reliably validate our sampling protocol. Second, due
to their contrasting physical–chemical properties (isoprene
is strongly lipophilic whereas acetone is hydrophilic) we
view these two species as paradigmatic examples revealing
valuable information on the broad spectrum of possible VOC

responses according to distinct physiological conditions. In
the following, we will briefly review some of the most
important facts that have provided a deeper understanding
of the involved mechanisms influencing the behavior of
aforementioned compounds in exhaled breath.

Isoprene

2-methyl-1,3-butadiene, better known as isoprene (CAS
number 78–79–5), is a colorless liquid organic hydrocarbon
with a molar mass of 68.11 g mol−1 and a boiling point
of 34 ◦C. Usually obtained from petroleum and coal to
make synthetic rubber it is also the major hydrocarbon
which is endogenously produced by mammals [33]. Its
primary source is attributed to the mevalonate pathway
of cholesterol biosynthesis [34, 35]. Originating from
acetyl-CoA mevalonate is transformed into dimethylallyl
pyrophosphate from which isoprene is produced. In
exhaled human breath isoprene concentration exhibits a large
variability. Typical levels in adults during rest have been
reported to spread around 100 ppb [36], whereas children show
lower levels [37, 38]. Corresponding blood concentrations
have been shown to vary around 37 nmol l−1 [39] with
an associated endogenous production rate ranging from
0.15 to 0.34 μmol h−1 kg−1 body weight [31, 40]. In
the first reference, metabolization has been quantified as
0.31 μmol h−1 kg−1 body weight, which leads to a net isoprene
production of 0.03 μmol h−1 kg−1 body weight (amounting
to approximately 5 × 10−5 mol/day for a 70 kg person).
Here net isoprene production is defined to be the endogenous
production minus metabolization. Body tissue represents a
potential storage volume for isoprene in the human body and
this is, in particular, so for fat tissue as can be deduced from a
high fat:blood partition coefficient of ∼82 [31].

Its high abundance in human breath and the fact that
there are no indications for concentration changes due to
food uptake [41] or for production and release in the upper
airways [42] makes isoprene a relatively easily quantifiable
test compound. Apart from being a convenient choice in
terms of measurability, breath isoprene has been suggested
as a sensitive indicator for assaying several metabolic effects
in the human body [43]. First, being a possible by-product
of cholesterol biosynthesis, it might serve as an additional
diagnostic parameter in the care of patients suffering from
lipid metabolism disorders such as hypercholesterolemia,
which is an established risk factor for atherosclerosis and
coronary heart disease. As an example, the estimation of
endogenous isoprene production rates on the basis of available
breath concentrations as well as appropriate kinetic models
might be an adequate tool to determine the contribution of
endogenous cholesterol release to the overall serum cholesterol
level, thereby improving the diagnostic potential of standard
blood tests, which merely quantify the combined effects of
endogenous and dietary factors. Moreover, evidence points
toward a strong linkage of breath isoprene levels to different
physiological states, thus promoting its general use in bio-
monitoring, e.g., during sleep [12, 44]. Due to its low
blood solubility (Henry’s law constant) and boiling point, it
is reasonable to assume that exhaled breath concentrations
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are substantially affected by alveolar ventilation and perfusion
(i.e., alveolar minute flow and cardiac output). Significant
correlations between cardiac output and breath isoprene
concentrations during cardiovascular surgery can be expected.
Drastically increasing levels of isoprene concentration were
reported [2, 36] at the onset of physical exercise. These
findings indicate that breath isoprene measurements might
provide new tools for continuous, non-invasive monitoring
of cardiac output.

Acetone

Acetone (CAS number 67–64–1), also known as propanone,
has a molar mass of 58.08 g mol−1. It is one of the ketone
bodies, together with beta-hydroxybutyric acid and acetoacetic
acid. Acetone is a product of the conversion of acetoacetate
by the elimination of CO2 [45, 46]:

CH3COCH2COO− + H+ → CH3COCH2COOH

→ CH3COCH3 + CO2.

This conversion is either a result of the non-enzymatic
decarboxylation of acetoacetate or is catalyzed by acetoacetate
decarboxylase. The acetoacetate decarboxylase is induced by
starvation and inhibited by acetone itself. High concentrations
of blood acetoacetate trigger the acetoacetate decarboxylase,
thus draining H+, while acetone, acting as a competitive
inhibitor, helps to prevent early acetoacetate decarboxylation
of acetoacetate. Acetoacetate is the product of beta-
hydroxybutyric acid (= HMG-CoA, an intermediate of
the mevalonate pathway) and can either be converted to
acetone (see the above reaction) or to D-beta-hydroxybutyrate.
Acetone is one of the most abundant compounds in human
breath. Typical adult exhaled breath concentrations are spread
around 600 ppb [27, 47] and plasma concentrations have
been quantified as ∼15 μmol l−1 [46]. Moreover, a linear
relationship between breath and blood concentrations can be
assumed [48]. Blood:tissue solubility was estimated to be
1.38 [49, 50], which makes body tissue a much less efficient
buffer for acetone than for isoprene. Because acetone is
poorly metabolized [51], simple diffusion and volatilization
in the lungs is likely to be the predominant path of removal
[48]. Due to its high water solubility, the upper airways,
however, cannot be regarded as an inert tube as in the case
for isoprene. In fact, the nasal epithelium and as well as
the tracheal mucosa linings have been demonstrated to play a
critical role in pre-alveolar exchange, a phenomenon which has
become known as the wash-in/wash-out effect [50, 52]. More
specifically, studies orchestrated in the framework of nasal
dosimetry research suggest that up to 75% of the compound
inhaled via an exposure chamber is absorbed into the mucous
membrane before reaching the alveolar region, and almost the
entire amount absorbed is released back into the breath stream
upon exhalation [51].

Being a byproduct of lipolysis, acetone has often been
suggested as a marker compound for monitoring the ketotic
state of an individual. Elevated breath acetone levels resulting
from fasting are quickly lowered by feeding (as the body is
nourished by glucose again [41]) and appear to be correlated

with rates of fat loss [53]. No influences of sex, age and
BMI on breath concentrations of acetone in adults could
be determined [27]. Senthilmohan et al [1] report slightly
increasing values upon physical exercise which again can
be rationalized by viewing acetone as metabolite of fat
catabolism. Moreover, patients suffering from (uncontrolled)
diabetes mellitus have been found to exhibit disproportionately
high breath acetone concentrations [54], thus establishing the
potential clinical relevance of breath acetone in related medical
treatment.

Test subjects and protocols

For our study, five males and three females with an age range
of 25–30 years were recruited as volunteers and agreed to
participate in up to three stress ergometer challenges with
different workload sequences. The test subjects had to be
in good health and physical shape although fitness levels
differed. Explicitly non-smokers were chosen even though
recent findings did not suggest any difference in isoprene
and acetone breath concentration between smokers and non-
smokers [55]. Measurements were all done in the morning
at approximately the same time when volunteers were able to
come into our test laboratory with an empty stomach so that at
least 7 h had passed since their last meal. The only exception
was drinking of water. Furthermore, volunteers were not
allowed to brush their teeth with toothpaste in the morning, so
we could exclude traces of it as a source of measurement error.
No test subject reported any prescribed medication or drug
intake. The study was approved by the Ethics Commission of
Innsbruck Medical University.

On the day of the experiment the volunteers had to avoid
strong physical activity and physical stress on the way from
their home to the test laboratory. Following arrival and
prior to starting the measurement regime, all test subjects
needed to rest for at least 10 min in which they were given
instructions regarding the workload protocol. Attention was
paid to adjust the test equipment to individual weights and
heights and to establish a comfortable seating position during
the experiment. Next the volunteers were set up with the
TFM electrodes, five to obtain the four-channel ECG and
three more for the ICG. Before each measurement, the gas
sample line was flushed with nitrogen (purity 6.0, Linde Gas
GmbH, Stadl-Paura, Austria) for about 1 min. In order to avoid
leakage the head mask was firmly fixed on the volunteer’s
head by means of a hair net; however, none of the test subjects
reported any discomfort or problems regarding difficulty in
breathing or even hyperventilation. The laboratory personnel
reminded the volunteer before and during the exercise to
minimize torso movements and to breathe regularly. Every
event occurring during the measurement was recorded in
written documentation including time and event description.
Also the staff closely monitored real-time results as they
were received through the TCP/IP connections from the
different instruments in our MATLAB graphical user interface
RETBAT.

We created a set of three different protocols all starting
with an initial 5 min resting phase without workload
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Figure 6. Typical results for one single test subject (male, 26 years) according to the three workload scenarios described in the text.

(cf figure 5). Then the volunteers were challenged to pedal at
constant speed between 70–80 r min−1 on the ergometer which
was set up for a workload resistance of 75 W for the first 15 min
in protocols 1 and 2. While resting time after this workload
sequence was only 3 min in protocol 1 it was extended to
12 min in protocol 2. After a second exercising phase of
15 min, the resting time was then reversed in both protocols.
Both regimes end with a 5 min workload followed by 5 min
of final resting. Starting with the same initial 5 min of resting,
in protocol 3 the volunteer’s position was changed from semi-
supine to supine position by lowering the ergometer back rest
electronically into a horizontal state for the length of 5 min.
Subsequently, the volunteers were put back into the initial

position and after 5 min started to pedal with a resistance
of 50 W. Following an escalating–deescalating regime, this
resistance was increased to 100 W after 5 min and then back
to 50 W after 10 min of exercise. Protocol 3 ended with a
10 min resting phase.

The data streams obtained were compiled in a self-
contained MATLAB data viewer enabling convenient data
exploring and export, which can be downloaded after
registration from http://realtime.voc-research.at. Determined
physiological variables are summarized in table 1, together
with some nominal values for resting conditions taken from the
literature. Representative profiles from a single study subject
are presented in figure 6. Hemodynamic and respiratory
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Table 1. Summary of measured variables together with some
nominal values during resting conditions.

Variable Abb. Nominal value

Hemodynamic parameters
Heart rate HR 70 (bpm) [77]
RR interval RRI 850 (ms) [77]
Systolic blood pressure sBP 120 (mmHg) [77]
Diastolic blood pressure dBP 80 (mmHg) [77]
Stroke volume SV 70 (ml) [77]
Cardiac output (Q̇c) CO 5 (l min−1) [77]
Total peripheral resistance TPR 1600 (dyne s cm−5) [77]

Ventilation parameters
Alveolar ventilation (V̇A) ALV 5.2 (lBTPS min−1) [32]
Inhalation volume (VT ) vinh 0.5 (lBTPS) [32]

PTR-MS related data
Drift chamber pressure pdrift 2.3 (mbar)
Carbon dioxide content pCO2 5.6 (%) [30]
(end-expiratory)
Count rates m/z∗ CR∗
Acetone concentration PPB59 500 (ppb) [27, 47]
Isoprene concentration PPB69 100 (ppb) [28, 36]

variables generally exhibit a very consistent and reproducible
behavior among the three protocols. In the following, we
will mainly focus on cardiac output and alveolar ventilation.
Cardiac output rapidly increased from approximately 5 l min−1

at rest to a constant plateau of about 12 l min−1 during
a permanent workload of 75 W. Simultaneously, alveolar
ventilation shows a characteristic rest-to-work transition from
5–10 l min−1 to a steady-state level of approximately
25–30 l min−1, thereby increasing the average ventilation–
perfusion ratio by a factor of ∼3. Transition times from resting
conditions to workload steady state and vice versa vary around
5 min. As for the third protocol, changing from semi-supine
to supine position usually led to a slight increase of cardiac
output while alveolar ventilation remained roughly constant,
thereby revealing the individual influence of cardiac output and
lung posture on exhaled isoprene and acetone concentrations,
respectively.

Results

Results isoprene

For all test subjects, end-tidal breath isoprene levels acquired
prior to the workload sequence varied around the nominal
value of approximately 100 ppb (3.7 nmol l−1 at body
temperature) presented in [28, 36] with minor intra-individual
variations; cf table 2. Multiplying this level by the measured
alveolar minute ventilation leads to a corresponding molar
flow (i.e., an amount of isoprene exhaled per minute) of about
30 nmol min−1, which is more than 80% of the average net
isoprene production for a 70 kg person as discussed above.
This indicates that the predominant path of non-metabolic
isoprene clearance is via the lungs [56]. Regarding the first
two protocols, in accordance with earlier findings [2, 36], the
onset of the first exercise period is accompanied by an increase
in end-tidal isoprene concentration, usually by a factor of
∼3–4 within about 1 min. Due to a simultaneous increase in

ventilation, the associated rise in amount of isoprene exhaled
per minute is even more pronounced, leading to a ratio between
peak molar flow and molar flow at rest of about 11. This phase
is followed by a gradual decline and the development of a
new steady state after 15 min of pedaling. Concentrations
in this last phase do not differ substantially from the starting
values, while molar flow is still higher by a factor of ∼3
compared to resting levels. In particular, the profile of
exhaled isoprene per minute generally is rather different from
carbon dioxide output during comparable workload schemes,
which typically shows a monotonic rest-to-work transition; cf
[57, 58]. However, one common feature appears to be the
abrupt response at the onset of constant workload instituted
from rest. The underlying mechanism for this effect
remains largely unexplained, but has mainly been ascribed
to neurogenic factors affecting ventilation [59].

Interestingly, repeating the same workload procedure
described above after intermediate pauses of 3 and 12 min,
respectively, results in similar concentration profiles but
significantly lower peaks, despite almost identical behavior
of cardiac output and alveolar ventilation. Consistent effects
emerge when reversing the order of the two interceptions,
which clearly suggests that initial dynamics tend to be restored
with prolonged pauses. For perspective, several follow-up
tests indicate that after 1 h of rest, maximum values again
coincide. There are essentially two hypotheses regarding this
effect: (a) changes in mixed venous blood concentration due
to depletion/replenishment of an isoprene buffer tissue (e.g.,
fat), and (b) sustained functional changes in the lung, probably
due to recruitment and distension of pulmonary capillaries
during exercise [32]. The above-mentioned quantitative
considerations and the fact that breath acetone and carbon
dioxide exercise levels (see figure 7) do not appear to be
affected by preceding pauses [57, 60] favor mechanism (a).
However, direct investigation of these issues will have to await
future blood tests as in [39].

Changes of body posture during the third workload
scenario generally yield a more or less pronounced rise in
breath isoprene concentration, its amplitude being correlated
to the associated increase in cardiac output. It should be noted
that in such cases, in contrast to the behavior during dynamic
exercise, isoprene breath concentrations do not appear to
revert to baseline levels within a short time. The escalating–
deescalating regime performed in the second part reproduces
the profile seen in the first two protocols. Specifically, the
load step from 50 W to 100 W only has a minor effect on the
observed dynamics.

Results acetone and carbon dioxide

Breath acetone concentrations at the beginning of the
measurement sequence show typical levels of about 1 ppm.
Marked day-to-day variations within one test subject
may occur but fall within the range reported in [61].
Particularly, as mentioned above, elevated levels might be
explained by increased lipolysis due to an empty stomach.
Generally, acetone concentrations show higher breath-to-
breath fluctuations than isoprene during rest as well as during
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Figure 7. Output of isoprene, acetone and CO2 during protocol 2 (sequential rectangular workload regime of 75 W with intermediate pauses
of 12 and 3 min, respectively).

exercise. The reason for this is still unclear. However,
preliminary experiments with our setup indicate that some
variation can be attributed to alternate nose and mouth
exhalation as well as flow rate. As has already been
discussed, due to its high Henry constant, acetone is readily
dissolved in the nasal epithelium, leading to lower breath
concentrations when the predominant path of exhalation is
through the nose [51, 52]. Acetone concentration in exhaled
breath during exercise closely resembles the profile of alveolar
ventilation respectively inhalation volume, showing abrupt
increases respectively drops in the range of 10–40% at the
onsets, respectively, stops of the individual workload periods.
Similarly to the results presented by Senthilmohan et al [1],
average concentrations often tend to rise slightly with duration
of exercise, which might stem from elevated fat catabolism as
a source of energy. Changing to supine position in protocol
3 seems to have negligible effects. CO2 content initially
varies around 4% and exhibits virtually identical dynamics
to acetone during the three workload scenarios, with an abrupt
increase/decrease of ∼20% at the start/stop of exercise [57].
This is in accordance with Ma et al [62], who demonstrated
a linear correlation between acetone and end-tidal carbon
dioxide pressure.

We are aware of the fact that acetone concentrations
obtained with the methodology illustrated above might
underestimate alveolar concentrations due to the deposition
of acetone onto the mucus linings in the conducting airways
upon exhalation [49]. In the case of highly water- and blood-
soluble compounds, isothermal rebreathing [63, 64] probably
represents the only viable gas sampling scheme to faithfully
extract alveolar concentrations. In particular, using this
procedure it was demonstrated by Anderson et al [49] that end-
tidal acetone partial pressure is about 20% lower than alveolar
partial pressure. However, a straightforward application

of isothermal rebreathing in the framework of ergometer
challenges has its inherent difficulties, since rebreathing
exhalation volumes several times might not be well tolerated
during workload segments. Nevertheless, efforts are underway
to incorporate this system into our setup. We thereby
hope to clarify whether elevated workload breath acetone
concentrations observed in our measurements can partly
be explained by altered ventilation–perfusion conditions or
whether they are simply a result of higher exhalation flow rate
and subsequently diminished mucosal absorption as suggested
in [49].

Discussion

One of the fundamental equations in our present understanding
of pulmonary gas exchange is the basic model due to Farhi
[65], which expresses mixed alveolar gas concentration CA

of a blood-borne gas as a function of its mixed venous
concentration Cv̄ , its blood:gas partition coefficient (i.e.,
dimensionless Henry’s law constant), λ, and an average
quotient between alveolar ventilation and capillary perfusion,
the ventilation–perfusion ratio r = V̇A/Q̇c. Specifically, by
describing the lung as one homogeneous alveolar unit with
an associated end-capillary blood concentration Cc′ as well as
blood inflow/outflow and gas inflow/outflow equal to Q̇c and
V̇A, respectively, conservation of matter leads to

VA

dCA

dt
= V̇A(CI − CA) + Q̇c(Cv̄ − Cc′),

where VA is the (invariant) effective pulmonary storage volume
of the gas under scrutiny, and CI is its concentration in inspired
ambient air, which will usually be close to zero in ordinary
isoprene or acetone measurements. Assuming steady-state
conditions, i.e., neglecting accumulation processes in the lung
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and requiring that Cc′ = λCA, i.e., that diffusion equilibrium
holds between end-capillary blood and free gas phase (which
is a reasonable premise in the case of many VOCs found in
exhaled breath [31, 50]), we conclude that

V̇ACA = Q̇c(Cv̄ − λCA),

which can be rearranged to give

CA = Cv̄

(r + λ)
(1)

with the alveolar concentration CA being accessible by exhaled
breath measurements. Since left and right heart usually eject
the same amount of blood, Q̇c is commonly set equal to cardiac
output. The fact is stressed that the above relation is only valid
in the case of physiologically inert gases, but not for oxygen
or carbon dioxide, where the purely physically dissolved
fraction in blood is small compared to the chemically bound
amount. Here Cc′ = λCA is replaced by more complicated
dissociation functions [66]. Equation (1), of course, is a
gross simplification of the actual gas exchange conditions
within a normal lung, since it completely neglects shunts,
physiological dead space and strong regional differences in
ventilation–perfusion ratio attributable to gravitational forces
and hydrostatic pressure differences [32]. As has been
proven in [67], requiring r to be constant throughout the
lung corresponds to the implicit assumption of optimal gas
exchange and in the case of endogenous VOCs underestimates
end-capillary concentrations calculated from alveolar levels.

Nonetheless, the previous relation is one of the pillars
for investigating observed behavior of many trace gases found
in exhaled breath. First, bearing in mind that during rest
on average it holds that r ∼ 1 [32, 68], we immediately see
that breath concentrations of low-soluble trace gases such as
isoprene (λisoprene ∼ 0.75 (mol l−1/mol l−1 = dimensionless)
at body temperature [31]) are very sensitive to sudden changes
in ventilation or perfusion, whereas breath concentrations
of compounds with high Henry constants such as acetone
(λacetone ∼ 200 (mol l−1/mol l−1 = dimensionless) at body
temperature [50, 69]) tend to show a rather damped reaction
to such disturbances. Moreover, it is evident that, while other
factors are equal, increasing/decreasing alveolar ventilation
will decrease/increase exhaled breath concentrations (due
to increased/decreased dilution), whereas the relationship
between breath concentration and cardiac output is monotonic
and reflects dependence on supply. The reader may easily
verify that these simple causalities offer a first qualitative
explanation for many of the effects observed during the
workload scenarios discussed above, particularly isoprene (cf
[2]). However, a precise model elucidating the dynamic
characteristics of breath isoprene and acetone concentrations,
especially during the unsteady stages of exercise, is still
lacking. This might be due to the fact that most of the
simplifying modeling assumptions allowing for an efficient
description of steady-state response do not necessarily remain
valid in such phases.

One exception is the contribution of Karl et al [2] who,
on the basis of the foregoing deliberations, developed a two-
compartment model in order to reproduce isoprene dynamics
in blood and exhaled breath. Their aim was to prove that

the large variability of breath isoprene concentration is not
due to exercise-induced changes in endogenous synthesis
(as, for example, in the case of flow-dependent release of
nitric oxide in endothelial cells [70]), but can mainly be
traced back to modified gas exchange behavior. Contradicting
the anatomic pulmonary structure, the lung compartment
was based on serial instead of parallel arrangement of the
alveolar units [32], leading to an exponential rather than
rational drop between mixed venous and end-capillary blood
concentrations in equation (1). However, the model response
to presented ventilation–perfusion data closely resembled the
determined breath concentrations. Unfortunately, this model
strongly depends on markedly delayed dynamics of alveolar
ventilation compared to cardiac output during exercise, which
could not be observed in our measurements: cardiac output
and alveolar ventilation increase almost simultaneously [59].
This discrepancy might stem from the fact that alveolar
ventilation in [2] was calculated as approximate breathing
frequency multiplied by a constant tidal volume, thereby
neglecting potential changes in the latter variable, which
are also revealed in our experiments. Nevertheless, despite
the fact that the model of Karl et al results in a very poor
approximation of breath isoprene concentration given our
data, there are several indications that the drastic variation
of this value observed during short-term moderate exercise
indeed originates from altered gas exchange conditions rather
than fluctuations in endogenous production. First, all of the
possible biochemical sources of isoprene known up to date are
long-term mechanisms, i.e., immediate changes in synthesis
rates are not justified by these pathways [34, 71, 72]. Second,
taking into account a tissue–lung transport delay of about 1
min [73, 74], mixed venous concentration can be assumed
constant during the first segment of exercise [58], so possible
feedback mechanisms from the body can plausibly be excluded
in this period. Third, our data suggest that isoprene breath
concentrations can be driven to an elevated plateau by rapidly
changing from upright to supine position. This maneuver is
very unlikely to induce metabolic variation but rather affects
ventilation–perfusion distribution in the lungs [32].

Accepting the above hypothesis at first glance seems to
limit the clinical relevance of breath isoprene, e.g., as a marker
compound for therapeutic monitoring of cholesterol-related
diseases, since well-defined standard (resting) conditions
become a fundamental prerequisite for single-breath tests.
On the other hand, we are confident that viewing the short-
term response of isoprene and other low-soluble breath
VOCs during workload sequences mainly as lung-induced
phenomena can offer entirely novel approaches for the
investigation of pulmonary functional properties. This is in
line with ongoing efforts to base multiple inert gas elimination
technique (MIGET [75, 76]) measurements on endogenous
breath compounds rather than intravenously infused inert
gases [44], thereby reducing patient load and improving
practicability. Here the principal idea is to take advantage of
the different solubility and hence distinct exhalation kinetics
of several VOCs in order to characterize ventilation–perfusion
mismatch throughout the lung, which is of paramount
importance in artificial ventilation and serves as a valuable
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diagnostic tool in the management of patients suffering from
pulmonary disorders. Another conceivable application would
be (intra-operative) monitoring of cardiac output on the
basis of VOC concentrations and ventilation data acquired in
real time.

Conclusions

As can be deduced from simple mass balance principles
describing pulmonary gas exchange, breath concentrations
of blood-borne volatile compounds need to be assessed
simultaneously with ventilation and perfusion in order to
extract comparable and representative values for endogenous
levels. Within this framework, an experimental setup
efficiently combining PTR-MS measurements with data
streams reflecting hemodynamic and respiratory factors was
developed, enabling the real-time evaluation of exhaled breath
VOC behavior in conjunction with decisive physiological
drivers during rest and ergometer-induced workload schemes.
Particularly, a methodology for selective breath-by-breath
sampling from end-tidal exhalation segments was introduced
and validated on the basis of resulting CO2 levels. The key
feature of our setup consists of a shutter mechanism separating
the PTR-MS from the inhalation/exhalation mouthpiece on
the basis of measured respiratory flow. Such an approach has
several significant advantages over high-resolution sampling
schemes continuously monitoring the entire breath cycle:
a larger number of distinct mass-to-charge ratios can be
measured, integration times are extended, longer inlet lines are
possible and tracking of breath phases is avoided. Moreover,
the control algorithm can easily be modified to realize
sampling from arbitrary exhalation segments.

In our opinion, pilot studies of breath compound
dynamics, e.g., during exercise have to be based on
reliably measurable substances, covering prototypic physical–
chemical properties. While isoprene is expected to react very
sensitively to changes in ventilation–perfusion ratio due to
its low solubility, acetone for analogous reasons shows a
comparably stable behavior. Particularly, we were able to
reconfirm the experimental findings of Senthilmohan et al [1]
and Karl et al [2] and added new data which we hope will help
to further clarify the kinetics of these species in the human
body.

Both acetone and isoprene profiles showed good
reproducibility among our moderate workload ergometer
stress tests. Data favor the hypothesis that short-term effects
visible in the concentration profiles of acetone can be ascribed
to different exhalation patterns, while the abrupt response
of isoprene at the onset of exercise appears to be caused
mainly by changes in pulmonary gas exchange. Some possible
clinical applications emerging from this observation have been
discussed.

As with every experimental scheme, there are inherent
strengths and weaknesses associated with our analysis
system: manual fine tuning of PTR-MS inlet-flow settings
is unavoidable for patients exhibiting breathing patterns
departing too far from the norm, and further optimization is
needed in order to reliably guarantee pressure stability within

the drift tube. Furthermore, the current setup has a limited
applicability in the quantification of highly soluble compounds
exchanging in the conducting airways. On the other hand,
we are confident that our methodology permits dynamics of
non-polar, low-soluble VOCs such as isoprene to be reliably
captured over a wide measurement range. Moreover, the
suggested sampling algorithm appears general enough to be
applicable in other mass spectrometric setups such as SIFT-
and IMR-MS as well and hopefully contributes to current
standardization efforts in real-time breath sampling.
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[55] Euler D E, Davé S J and Guo H 1996 Effect of cigarette
smoking on pentane excretion in alveolar breath Clin.
Chem. 42 303–8

[56] Dahl A R, Birnbaum L S, Bond J A, Gervasi P G
and Henderson R F 1987 The fate of isoprene inhaled by
rats: comparison to butadiene Toxicol. Appl. Pharmacol.
89 237–48

[57] Wasserman D H and Whipp B J 1983 Coupling of ventilation
to pulmonary gas exchange during nonsteady-state work in
men J. Appl. Physiol. 54 587–93

[58] Whipp B J, Ward S A, Lamarra N, Davis J A and
Wasserman K 1982 Parameters of ventilatory and gas
exchange dynamics during exercise J. Appl. Physiol.
52 1506–13

[59] Johnson A T 2007 Biomechanics and Exercise Physiology:
Quantitative Modeling 2nd edn (Boca Raton, FL: Chemical
Rubber Company)

[60] Grassi B, Marconi C, Meyer M, Rieu M and Cerretelli P 1997
Gas exchange and cardiovascular kinetics with different
exercise protocols in heart transplant recipients J. Appl.
Physiol. 82 1952–62

[61] Diskin A M, Spanel P and Smith D 2003 Time variation of
ammonia, acetone, isoprene and ethanol in breath: a
quantitative SIFT-MS study over 30 days Physiol. Meas.
24 107–19

[62] Ma W, Liu X and Pawliszyn J 2006 Analysis of human breath
with micro extraction techniques and continuous
monitoring of carbon dioxide concentration Anal. Bioanal.
Chem. 385 1398–408

[63] O’Hara M E, O’Hehir S, Green S and Mayhew C A
2008 Development of a protocol to measure volatile
organic compounds in human breath: a comparison of
rebreathing and on-line single exhalations using proton
transfer reaction mass spectrometry Physiol. Meas.
29 309–30

[64] Ohlsson J, Ralph D D, Mandelkorn M A, Babb A L
and Hlastala M P 1990 Accurate measurement of blood
alcohol concentration with isothermal rebreathing J. Stud.
Alcohol 51 6–13

[65] Farhi L E 1967 Elimination of inert gas by the lung Respir.
Physiol. 3 1–11

[66] Ottesen J T, Olufsen M S and Larsen J K 2004 Applied
Mathematical Models in Human Physiology (Philadelphia,
PA: SIAM)

[67] Hoppensteadt F C and Peskin C S 2002 Modeling and
Simulation in Medicine and the Life Sciences 2nd edn (New
York: Springer)

[68] Csanady G A and Filser J G 2001 The relevance of physical
activity for the kinetics of inhaled gaseous substances Arch.
Toxicol. 74 663–72

[69] Kumagai S and Matsunaga I 2000 A lung model describing
uptake of organic solvents and roles of mucosal blood flow
and metabolism in the bronchioles Inhal. Toxicol.
12 491–510

[70] Mohrman D E and Heller L J 2006 Cardiovascluar
Physiology 6th edn (New York: McGraw-Hill/Lange
Physiology)

[71] Kuzma J, Nemecek-Marshall M, Pollock W H and Fall R 1995
Bacteria produce the volatile hydrocarbon isoprene Curr.
Microbiol. 30 97–103

[72] Stein R A and Mead J F 1988 Small hydrocarbons formed
by the peroxidation of squalene Chem. Phys. Lipids
46 117–20

[73] Batzel J J, Kappel F, Schneditz D and Tran H T 2007
Cardiovascular and Respiratory Systems: Modeling,
Analysis and Control (Philadelphia, PA: SIAM)

[74] Grodins F S, Buell J and Bart A J 1967 Mathematical analysis
and digital simulation of the respiratory control system J.
Appl. Physiol. 22 260–76

[75] Wagner P D 2008 The multiple inert gas elimination technique
(MIGET) Intensive Care Med. 34 994–1001

[76] Wagner P D, Saltzman H A and West J B 1974 Measurement
of continuous distributions of ventilation-perfusion
ratios—theory J. Appl. Physiol. 36 588–99

[77] Silbernagl S and Despopoulos A 1979 Taschenatlas der
Physiologie (Stuttgart: Georg Thieme Verlag)

16

95



96 CHAPTER 5. PAPER A



Chapter 6

Paper B: Dynamic profiles of volatile organic compounds in exhaled breath as
determined by a coupled PTR–MS/GC–MS study

JULIAN KING ET AL.

Physiological Measurement (2010) 31, 1169–1184

97



IOP PUBLISHING PHYSIOLOGICAL MEASUREMENT

Physiol. Meas. 31 (2010) 1169–1184 doi:10.1088/0967-3334/31/9/008

Dynamic profiles of volatile organic compounds in
exhaled breath as determined by a coupled
PTR-MS/GC-MS study

J King1,2, P Mochalski2,3, A Kupferthaler1,2, K Unterkofler2,4, H Koc2,4,
W Filipiak1,2, S Teschl5, H Hinterhuber2,6 and A Amann1,2,7

1 University Clinic for Anesthesia, Innsbruck Medical University, Anichstr. 35, A-6020
Innsbruck, Austria
2 Breath Research Institute, Austrian Academy of Sciences, Dammstr. 22, A-6850 Dornbirn,
Austria
3 Institute of Nuclear Physics PAN, Radzikowskiego 152, PL 31342 Kraków, Poland
4 Vorarlberg University of Applied Sciences, Hochschulstr. 1, A-6850 Dornbirn, Austria
5 University of Applied Sciences Technikum Wien, Höchstädtplatz 5, A-1200 Wien, Austria
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Abstract
In this phenomenological study we focus on dynamic measurements of volatile
organic compounds (VOCs) in exhaled breath under exercise conditions.
An experimental setup efficiently combining breath-by-breath analyses using
proton transfer reaction mass spectrometry (PTR-MS) with data reflecting the
behaviour of major hemodynamic and respiratory parameters is presented.
Furthermore, a methodology for complementing continuous VOC profiles
obtained by PTR-MS with simultaneous SPME/GC-MS measurements is
outlined. These investigations aim at evaluating the impact of breathing
patterns, cardiac output or blood pressure on the observed breath concentration
and allow for the detection and identification of several VOCs revealing
characteristic rest-to-work transitions in response to variations in ventilation
or perfusion. Examples of such compounds include isoprene, methyl acetate,
butane, DMS and 2-pentanone. In particular, both isoprene and methyl acetate
exhibit a drastic rise in concentration shortly after the onset of exercise, usually
by a factor of about 3–5 within approximately 1 min of pedalling. These
specific VOCs might also be interpreted as potentially sensitive indicators
for fluctuations of blood or respiratory flow and can therefore be viewed as
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candidate compounds for future assessments of hemodynamics, pulmonary
function and gas exchange patterns via observed VOC behaviour.

Keywords: exhaled breath analysis, volatile organic compounds (VOCs),
exercise, proton transfer reaction mass spectrometry (PTR-MS), gas
chromatography mass spectrometry (GC-MS), solid phase micro-extraction
(SPME)

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Exhaled breath contains a number of blood-borne volatile organic compounds (VOCs) with
great potential for medical diagnosis and therapeutic monitoring (Miekisch et al 2004, Amann
et al 2004, Amann and Smith 2005, Bajtarevic et al 2009). These endogenous VOCs may
result from normal metabolic activity as well as from pathological disorders. Exhaled breath
analysis is non-invasive, and breath may be sampled as often as it is desirable, even under
challenging conditions such as during operations or at an intensive care unit (Pabst et al
2007). It may also provide information on infections, e.g., of the lungs or the sinuses, by
detecting specific volatiles released by bacteria (Preti et al 2009). Therefore, breath analysis
could be of great clinical value in the future, introducing valuable diagnostic indices that are
complementary to those gained by using more invasive methods (Risby 2002, Schubert et al
2005, Amann et al 2007).

The concentrations of certain compounds in exhaled breath during exercise may change
rapidly (Senthilmohan et al 2000, Karl et al 2001, King et al 2009). Real-time investigations
in this context have mainly been based on direct mass spectrometric methods allowing breath-
to-breath resolution, such as proton transfer reaction mass spectrometry (PTR-MS) (Lindinger
et al 1998a, Lindinger et al 1998b) or selected ion flow tube mass spectrometry (SIFT-MS)
(Smith and Spanel 1996, Spanel and Smith 1996). These analytical techniques permit one to
detect and quantify very quick changes in breath composition and hence ensure an efficient
tracking of possibly short-lived variations in the acquired concentration profiles. Efforts in
the context of real-time breath measurements so far have therefore been limited to breath
constituents which can be reliably measured by these devices, such as isoprene, acetone or
ammonia.

Isoprene (CAS number 78-79-5) certainly holds a distinguished status, since it can be
regarded as the prototype of an exhaled breath VOC exhibiting pronounced rest-to-work
transitions (Karl et al 2001, Turner et al 2006, King et al 2009). We recently demonstrated
that end-tidal isoprene abruptly increases during moderate workload ergometer challenges
at 75 W, reaching a peak value within about 1 min of pedalling. This maximum can differ
from the end-tidal steady state concentration at rest by a factor of up to 4 (King et al 2009).
Since endogenous isoprene synthesis has mainly been attributed to pathways with much larger
time constants (Stone et al 1993), we do not expect that the aforementioned rise in isoprene
concentration is due to an increased production rate in the body, but rather due to changes in
pulmonary function or changes in hemodynamics.

With this illustrative example in mind, we may thus expect that the sampling of exhaled
breath, even under resting conditions, can strongly be influenced by specific physiological
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parameters (Cope et al 2004). Hence, the impact of breathing rate, breathing volume, cardiac
output or blood pressure on the concentration dynamics of specific compounds in exhaled
breath generally merits further investigation. A paradigmatic example within this framework
is the small inorganic molecule nitric oxide (NO) (Kharitonov et al 1997, Dweik et al 1998,
Bush 2000, Gustafsson 2005, Horvath et al 2003). NO arises in almost every human organ,
has a short half-life and may change its concentration quickly. It is also produced in the lungs,
the nasal cavity and the sinuses. In the latter it acts by its bactericidal effect (Bush 2000).
The concentration in the nasal cavity and the paranasal sinuses is usually much higher than
in the lungs, and actually increases in concentration within a few seconds during humming
(Lundberg et al 2004, Maniscalco et al 2004). The use of NO for the therapeutic monitoring
of asthma relies on the amount released in the airways. Hence, appropriate measurements of
airway released NO are important for its clinical use and therefore careful sampling of breath
under controlled conditions is necessary. This led to joint guidelines of the American Thoracic
Society (ATS) and the European Respiratory Society (ERS) for the protocol to be used for
NO measurements in exhaled breath (ATS 1999, ATS/ERS 2005). We expect that a careful
choice of conditions and sampling protocol will be important not only for NO, but also for
various other volatile molecular species.

Within this context, the primary motivation for the present work was to actively scan
exhaled breath for trace gases showing pronounced changes in response to variations in
ventilation and perfusion. While on the one hand such compounds would evidently require
special attention regarding their sampling procedure, they can also be thought of as sensitive
indicators for fluctuations in respiratory/hemodynamic flow. In the same spirit, they might
therefore serve as candidate compounds for assessing pulmonary gas exchange patterns via
observed VOC profiles. Consequently, a secondary aim was also to supplement and support
continuing efforts to base multiple inert gas elimination technique (MIGET) (Wagner 2008,
Wagner et al 1974)) on endogenous VOCs rather than exogenously administered gases, thereby
circumventing invasive infusion and improving patient compliance (Anderson and Hlastala
2010). Furthermore, our measurements are intended to place previous measurements of breath
isoprene and acetone in a broader context by comparing their dynamic behaviour during distinct
physiological states with synchronized profiles of VOCs expected to show similar exhalation
kinetics.

2. Methods

2.1. Sampling procedures

Recently, an experimental setup efficiently combining PTR-MS measurements with continuous
data streams reflecting a series of hemodynamic and respiratory factors was developed
in our group (King et al 2009). This setup serves to assess the behaviour of exhaled
breath components in conjunction with decisive physiological driving forces during rest and
ergometer-induced workload schemes in real time. While its main purpose is to monitor
specific, predefined molecular species, the identification problem stated above can only be
tackled with alternative analytical techniques, giving detailed information on the composition
of the exhaled breath sample. Gas chromatography mass spectrometry (GC-MS) coupled with
solid phase micro-extraction (SPME) as a pre-concentration method can be regarded as gold
standard within this framework (Amorim and de 2007, Bajtarevic et al 2009, Ligor et al 2008,
2009, Pawliszyn 1997, Schubert et al 2003, 2005, Miekisch et al 2008). SPME/GC-MS
represents a good trade-off between high resolution of individual breath components with
low detection limits and rapid sampling. The main advantages of SPME are its ease of

100 CHAPTER 6. PAPER B



1172 J King et al
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Figure 1. Sketch of the flow transducer mouthpiece from which end-tidal samples are manually
extracted for subsequent SPME/GC-MS analysis.

operation and the small amounts of sample gas—usually between 10 and 20 ml—required to
perform extraction. An additional benefit from the usage of SPME/GC-MS techniques is the
possibility of detecting and quantifying compounds that cannot be measured by the PTR-MS
(e.g. alkanes). A suitable choice of specimen storage vessels guarantees high recoveries of
the target compounds and ensures reliable GC-MS analyses of breath samples taken within a
relatively short period of time. In the following, a methodology for complementing continuous
VOC profiles obtained by PTR-MS with simultaneous SPME/GC-MS measurements under
workload conditions is developed.

A detailed description of the entire experimental setup used for acquiring hemodynamic
and respiratory data in conjunction with PTR-MS variables is given elsewhere (King et al
2009). Here we will only discuss the parts that are relevant for the analysis of exhaled
breath samples by GC-MS. The test subject freely inhales/exhales through a flow transducer
mouthpiece, which is connected to a silicone head mask covering mouth and nose, see
figure 1.

From the mouthpiece, gas samples are directed to the PTR-MS via a heated Teflon
sampling line. Moreover, respiratory flow is obtained by means of a differential pressure
sensor as explained in King et al (2009). Breath samples for the GC-MS analyses were taken
using a 20 ml gas-tight glass syringe (Roth, Germany) equipped with a replaceable needle.
For sampling purposes an additional rubber septum (Supelco, Canada) was installed in the
wall of the flow transducer mouthpiece approximately 3 cm from the lips. Sampling was
achieved manually by piercing the septum and drawing a volume of 18 ml during one single
end-tidal exhalation segment. Care was taken to ensure that the needle tip is located at the
centre of the axial mainstream. In order to avoid possible losses of hydrophilic compounds
due to condensation, needle and syringe were preheated to about 60 ◦C shortly before the
sampling procedure.

Filling of the syringe was timed according to the automatic real-time procedure for the
selective sampling from specific exhalation phases as described in King et al (2009). Adequate
algorithmic processing of measured respiratory flow allows for a reliable breath-by-breath
detection of each end-tidal segment, with its start and end being marked by an acoustic signal.
In order to prevent gas samples from being diluted or contaminated with (fresh) room air at
the onset of the next inhalation, the entire sampling process including pressure equilibration
within the syringe has to be completed within this time window. Test subjects were therefore
asked to slightly prolong their exhalation to about 4 s in the respective breath cycle. Such a
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procedure extended the length of the end-tidal phase and turned out to be satisfactory for all
test subjects. Some bias might be introduced by this protocol due to the fact that VOC breath
concentrations have been demonstrated to increase with the duration of the end-tidal phase
(Anderson et al 2003, O’Hara et al 2008). However, after an examination of the PTR/GC-MS
overlays for acetone and isoprene associated with preliminary single expirograms, we decided
that the corresponding error will only have a minor impact on quantification. In particular,
since the extraction of PTR-MS gas samples is triggered by the same detection mechanism as
described above, applying the aforementioned sampling protocol ensures that both probes are
drawn from the same portion of exhaled breath.

Immediately after sampling the syringe content was injected into an evacuated SPME vial
(20 ml in volume, Gerstel, Germany) sealed with a 1.3 mm butyl/PTFE septum (Macherey-
Nagel, Germany). Since the SPME vials also served as storage containers, the type of septa
was carefully selected with respect to the background and recovery of the compounds of
interest. The applied material guaranteed recoveries better than 90% within the first 12 h of
storage. Finally, pressure in the vial was balanced with high-purity nitrogen (of quality 6.0,
i.e. with a purity of 99.9999%).

2.2. GC-MS analysis

The gas chromatographic analyses were performed using an Agilent Technologies (USA)
type 7890 gas chromatograph equipped with a mass selective detector (MSD) (type 5975C,
Agilent, USA). SPME was performed automatically (auto sampler MPS2, Gerstel, Germany)
by inserting the SPME fibre coated with 75 μm CAR-PDMS (Supelco, Canada) into the vials
and exposing the fibre to the sample for 10 min. The sample temperature during the extraction
was kept at 40 ◦C to avoid the condensation of water vapour. Subsequently, the fibre was
immediately introduced into the injector of the gas chromatograph, with thermal desorption
at 290 ◦C in a splitless mode (1 min). The fibre was conditioned at 290 ◦C for 15 min prior to
each analysis.

Analytes under study were separated using a PoraBond Q column (25 m × 0.32 mm, film
thickness 5 μm, Varian USA) working in a constant flow mode (1.7 ml min−1). The column
temperature program was chosen as follows: 90 ◦C for 7 min, increase to 140 ◦C at a rate
of 10 ◦C min−1, constant temperature of 140 ◦C for 7 min, increase to 260 ◦C at a rate of
15 ◦C min−1 and 260 ◦C for 6 min. The mass spectrometer worked in a combined SCAN/SIM
mode. The SCAN, with an associated range set from m/z 35 to m/z 200, was used for the
identification of potential target compounds as well as for the quantification of isoprene and
acetone. Additionally, major study compounds as discussed below were quantified using SIM
(selective ion monitoring mode), with the corresponding m/z ratios and dwell times being
presented in table 1.

Calibration graphs and standard retention times were created on the basis of analyses
of calibration mixtures prepared from pure compounds. Isoprene (99.5%), methyl acetate
(99.5%) and butane (15 ppm C1–C6 hydrocarbon standard) were obtained from Sigma-
Aldrich (USA), dimethyl sulfide (99%) from Fluka (USA), 2-pentanone (97%) from Acros
Organics (Belgium) and acetone (99.5%) was purchased from Merck (Germany). A primary
gas standard was prepared in a 1 litre glass bulb (Supelco, Canada) by injecting 0.5–2 μl
(depending on the target concentration) of pure compound into the evacuated bulb. Next, the
bulb was heated to 80 ◦C for 15 min in order to ensure evaporation and subsequently balanced
with high-purity nitrogen (6.0–99.9999%). The primary standard was used to prepare six
calibration mixtures with concentrations ranging from 20 to 1000 ppb in the case of acetone
and isoprene, and 0.1 to 20 ppb for the other species. This was accomplished by transferring
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Table 1. Major study compounds together with relevant methodological data. Retention times
used for confirming substance identifications based on spectral data are obtained by means of
calibration mixtures. Dwell times refer to the SIM mode.

CAS Retention Dwell RSD LOD
Compound number time (min) m/z (SIM) time (ms) (%) (ppb)

Isoprene 78-79-5 13.39 – – 2.1 1.4
Acetone 67-64-1 10.89 – – 2.6 2.5
DMS 75-18-3 11.54 47, 61, 62 60 5.5 0.05
Methyl acetate 79-20-9 12.28 43, 74 60 4.8 0.04
Butane 106-97-8 8.68 43 180 5.8 0.2
2-pentanone 107-87-9 22.72 86 60 3.8 0.04

0.05–1 ml of primary standard into 3 litre Tedlar bags (SKC Inc., USA) filled in advance
with 1500 ml of nitrogen. Final humid calibration mixtures were created in the SPME vials.
For this purpose, vials were evacuated with a membrane pump (Vacuubrand, Germany) and
heated to 45 ◦C for 2 min. Next, an amount of 0.8 μl of distilled water—corresponding to the
maximal water content in 18 ml of breath (100% relative humidity at 37 ◦C)—was injected.
After 1 min (the time necessary for complete water evaporation), an appropriate volume of
dry mixtures was introduced into the vials. During the whole process the vial temperature was
maintained at 45 ◦C to avoid condensation.

Validation parameters were estimated using the calibration graphs. Limits of detection,
defined as a signal-to-noise ratio of 3:1, are presented in table 1. The system response was
found to be linear with correlation coefficients ranging from 0.996 to 0.999. The relative
standard deviations (RSDs) were calculated based on consecutive analyses of five separate
breath samples taken within 1 min from a single volunteer who had been resting for 15 min.
Such a procedure was necessary to include the influence of manual sampling on the RSD
values. The estimated RSDs are summarized in table 1.

2.3. Test subjects and protocols

A cohort of seven healthy normal volunteers (four males, 26–28 years; three females 21–
28 years; two smokers) were recruited to participate in a single moderate exercise ergometer
challenge consisting of an initial resting phase of 5–10 min, followed by a constant workload
segment of 75 W for 15 min. The regime ends with a further resting phase of 5 min. No test
subject reported any prescribed medication or drug intake. The study was approved by the
Ethics Commission of Innsbruck Medical University.

The test subjects were all measured in the morning with an empty stomach. The only
exception was drinking of water. Smokers were asked to refrain from smoking on the day of
measurement. Volunteers were required to rest at least 15 min prior to analysis. Within this
time, they were given general information regarding the experimental protocol and received
some training in order to reliably provide a triggered exhalation as discussed in the previous
sections. Additional instrumentation and protocols closely followed the general procedure
reported in King et al (2009).

Regarding real-time VOC analysis, we focused on two major exhaled breath constituents:
acetone and isoprene, which can be measured by PTR-MS in their protonated forms at mass-
to-charge ratios 59 and 69, respectively (Arendacká et al 2008, Schwarz et al 2009b). For
a series of single experiments we also included m/z 63 (tentatively dimethyl sulfide (DMS))
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Figure 2. Average relative changes of several VOC concentrations (determined by SPME/GC-
MS) during constant load exercise of 75 W as compared to their resting levels (t = 0). The
graphs presented here correspond to the median values among all seven volunteers investigated.
In particular, the concentration profiles were all normalized to the initial resting values Crest prior
to averaging.

as well as m/z 75 (tentatively methyl acetate). For purposes of normalization and quality
control we additionally monitor m/z 21 (isotopologue of the primary hydronium ions) and
m/z 37 (first monohydrate cluster). Further details on subsequent quantification are given in
Schwarz et al (2009a). Based on our knowledge of isoprene and acetone behaviour,
representative time instants for drawing the GC-MS samples were defined as follows: one
sample was extracted under resting conditions as soon as the test subject had accustomed to
the experimental situation and cardiac output as well as alveolar ventilation had stabilized
sufficiently, i.e. about 2 min after the start of our protocol. Subsequent samples were drawn
after 0.5, 1, 3, 5, 10 and 15 min had passed since the onset of exercise. Additionally, for the
purpose of background correction, a room air sample was taken just before the experiment.

3. Results and discussion

On the basis of the underlying SPME-GCMS analysis method discussed before, five
compounds were found to substantially increase/decrease in response to the workload
sequence: isoprene, butane, methyl acetate, DMS and 2-pentanone. Quantitative effects
for these compounds are summarized in figure 2 as well as in table 2.

For comparative reasons, only relative changes are presented in figure 2, i.e. all individual
profiles have been normalized to the respective initial steady state value. The measured
ventilation–perfusion ratio reflects the applied workload sequence starting at time zero.

Major hemodynamic and respiratory variables generally exhibit a very consistent
behaviour among all test subjects (King et al 2009). At the onset of exercise, cardiac output
rapidly increases from a mean resting value of approximately 5 l min−1 at rest to a constant
plateau of about 12 l min−1 during constant workload of 75 W. Simultaneously, alveolar
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Table 2. GC-MS quantification results for the seven volunteers investigated. Time instants
correspond to exercise duration in minutes (with time zero referring to resting levels in end-tidal
breath).

Volunteer
number/time 0 0.5 1 3 5 10 15

Butane (ppb)

1 n.d.
2 5.94 3.93 3.61 3.43 3.45 3.42 3.7
3 n.d.
4 6.47 8.57 7.83 2.45 1.68 2.02 1.74
5 0.6 0.45 0.4 0.13 0.23 0.29 0.36
6 1.24 0.98 0.76 0.42 0.43 0.5 0.45
7 2.43 2.73 1.43 0.52 0.6 0.79 0.71

Dimethyl sulfide (ppb)

1 2.69 3.55 3.48 2.83 2.75 2.37 2.18
2 0.79 0.69 0.82 0.81 0.71 0.76 0.77
3 1.52 1.78 1.92 1.73 1.74 1.54 1.46
4 3.56 5.44 6.05 4.73 3.54 3.18 3.02
5 1.38 1.52 1.5 1.25 1.2 1.18 1.13
6 2.79 4.59 4.52 3.78 3.26 2.77 2.69
7 3.28 3.38 2.93 2.54 2.26 1.94 2.08

Isoprene (ppb)

1 163 532 669 324 240 148 124
2 82 122 129 98 79 59 52
3 138 260 342 200 176 130 81
4 107 317 441 159 88 79 67
5 78 192 243 119 79 63 50
6 58 209 212 104 71 47 42
7 154 359 467 229 148 102 79

Methyl acetate (ppb)

1 1.66 8.02 9.27 7.7 6.59 4.57 3.31
2 0.53 1.13 1.61 1.31 1.28 1.09 0.9
3 3.23 6.5 8.1 6.99 6.88 5.56 3.86
4 0.22 0.76 1.03 1.02 0.82 0.93 0.96
5 0.04 0.48 0.62 0.59 0.49 0.44 0.37
6 0.81 3.47 3.54 2.86 2.3 1.44 1.05
7 0.36 1.25 1.65 1.63 1.29 0.92 0.65

2-pentanone (ppb)

1 0.26 0.33 0.35 0.32 0.31 0.3 0.27
2 0.19 0.18 0.21 0.18 0.19 0.18 0.19
3 0.23 0.2 0.21 0.22 0.23 0.23 0.22
4 0.21 0.25 0.28 0.3 0.26 0.29 0.31
5 0.11 0.15 0.16 0.16 0.15 0.15 0.15
6 0.25 0.34 0.34 0.33 0.31 0.33 0.34
7 0.28 0.34 0.39 0.42 0.41 0.42 0.44
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Figure 3. Simultaneous extraction of end-tidal VOC profiles by PTR-MS (continuous signal) and
discrete SPME/GC-MS measurements. Error bars for the latter result from taking two times the
associated RSD as given in table 1. Data refer to one single volunteer during a constant workload
protocol of 75 W after an initial resting phase of 5 min.

ventilation shows a monotonic rest-to-work transition from 5–10 l min−1 to a steady state level
of approximately 25–30 l min−1, thereby increasing the average ventilation–perfusion ratio by
a factor of ∼2.5, see figure 2.

Representative PTR-MS/GC-MS results for one single study subject are given in figure 3,
displaying continuous end-tidal concentration profiles of isoprene, acetone and methyl acetate
as determined by PTR-MS in comparison with discrete measurements obtained from our GC-
MS analysis. Error bars result from taking two times the associated RSD value as given in
table 1. In particular, the good agreement between both methods for isoprene and acetone can
be seen as a cross-validation of phenomenological results related to both compounds which
have been published previously (Karl et al 2001, King et al 2009).

For all test subjects, individual isoprene levels in breath obtained prior to the workload
sequence varied within the range of 58–163 ppb, the median concentration being 107 ppb (cf,
also Kushch et al (2008)). In accordance with earlier findings, end-tidal isoprene concentration
abruptly increases by a factor of ∼3–4 within the first minute of the applied workload scenario,
followed by a gradual decline back to initial (resting) levels within approximately 15 min of
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Table 3. Functional similarities between isoprene and butane with respect to alveolar gas exchange.

MW
Blood:gas partition
coefficient λb:a

Octanol:water partition
coefficient log (Kow)

Isoprene 68 0.75 (Filser et al 1996, Karl
et al 2001)

2.42 (Howard and Meylan
1997)

Butane 58 0.41∗ (Liu et al 1994) 2.89 (Sangster 1997)

∗refers to rat blood.

exercise. Excellent agreement between isoprene concentrations acquired by PTR-MS and GC-
MS throughout all measurements reconfirms the extraction quality of our manually obtained
samples. On the basis of this observation it is deduced that the quantities of additional
compounds in these samples are indeed representative for the corresponding end-tidal levels.
In this sense, isoprene acts as a practicable control value that can potentially be used for
detecting possible error sources and losses in the manual sampling regime.

The marked rise of isoprene at the onset of exercise has mainly been attributed to
its low affinity for blood (dimensionless Ostwald blood:gas partition coefficient at body
temperature = 0.75 (Filser et al 1996)). The classical alveolar gas exchange theory due
to Farhi predicts a significant influence of ventilation and perfusion on the observed exhaled
breath concentration for compounds with small solubility (Farhi 1967, Farhi and Yokoyama
1967), see also King et al (2009) for a derivation. In view of the previously described
isoprene exhalation kinetics, natural candidates for preliminary studies of VOC behaviour
under workload conditions hence are substances with similar physico-chemical behaviour,
e.g. the family of hydrocarbons. Within the ensemble of volunteers investigated, our main
focus was on butane, as the respective alveolar gradients (i.e. the difference between end-tidal
levels and background values) were generally high enough to allow for a reliable quantification.
Butane appeared in the breath of five volunteers with resting levels ranging from 0.6 to 6.5 ppb
(median: 2.4 ppb). Blood-borne butane is considered to originate from protein oxidation
and/or bacteria production in the colon (Kharitonov and Barnes 2002, Miekisch et al 2004)
and is particularly interesting due its functional comparability with isoprene. Indeed, the
major factors anticipated to affect pulmonary gas exchange show substantial similarity, see
table 3 as well as Meulenberg and Vijverberg (2000).

According to these values, by Graham’s law, diffusivity (governing the passage through
the tissue interfaces separating the respiratory microvasculature from the alveolar space) is
expected to be roughly similar for both compounds (West 2005). Moreover, the presented
affinities for blood indicate that supply and removal via the pulmonary circulation will be of
comparable order.

Despite this agreement, breath concentrations of butane and isoprene exhibit an entirely
different qualitative response among the ensemble of volunteers investigated: the behaviour
of butane at the onset of exercise resembles the trend as predicted by the classical Farhi
equation (i.e. a decrease with higher ventilation–perfusion ratios, see figure 2), whereas the
behaviour of isoprene does not. Consequently, from the viewpoint of endogenous MIGET,
isoprene (in contrast to butane) appears to be of limited suitability as a potential test gas. The
above-mentioned visual discrepancy might be assessed in a more formal manner by employing
a Wilcoxon signed rank test (Wilcoxon 1945) at each discrete time instant greater than zero.
It tests the null hypothesis that the differences between the respective normalized butane and
isoprene levels are drawn from a continuous, symmetric distribution with zero median. Using
a 10% confidence level, this null hypothesis might be rejected at all time instants greater than
zero with a maximum p-value of 0.0625.
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Figure 4. SPME/GC-MS profile of butane (λb:a = 0.41; 1 nmol l−1 approximately equals 25 ppb
under ambient conditions) compared with the synchronized and scaled PTR-MS response for
isoprene (λb:a = 0.75). The experimental protocol is as follows: 0–10 min rest; 10–20 min supine
position; 20–30 min rest; 30–45 min exercise at 75 W; 45–49 min rest. The dotted light grey line
represents an eye guide for the expected alveolar concentration of butane as predicted by the Farhi
equation (postulating a constant mixed venous blood concentration of 0.7 nmol l−1).

In a series of separate experiments we exclusively focused on the simultaneous dynamics
of breath isoprene and butane in response to changes in ventilation and perfusion. Typical
results referring to one single test subject are given in figure 4. Here, in addition to the exercise
protocol discussed before, the ventilation–perfusion ratio is altered by a sudden change in body
posture from semi-supine to supine position (corresponding to the time interval between 10
and 20 min).

As has already been shown in King et al (2009), such a manoeuvre will result in only
minor changes of alveolar ventilation, while the associated rise in cardiac output (mainly
due to an increase in stroke volume) can be utilized for assessing the individual contribution
of pulmonary blood flow on the alveolar gas exchange process. Both isoprene and butane
concentrations in end-tidal breath approach an apparently stable steady state in supine position
that is about a factor of 1.5 higher compared to the resting level. This is the qualitative behaviour
expected from the Farhi equation. Particularly, a markedly peak shaped response of isoprene
as in the case of ergometer scenarios could not be observed.

Combining the above-mentioned findings it might thus be inferred that some isoprene-
specific (release) mechanism has to be taken into account for capturing the exhalation kinetics
of this important compound at the onset of physical exercise. The isoprene sources and
exact stimuli for such a workload-induced process, however, remain an object of speculation.
Potential candidates for instance include the working muscle compartment, which receives
disproportionately high fractions of cardiac output during an ergometer challenge and
moreover undergoes a rapid change in metabolic activity from which isoprene might be
derived. Another alternative, which might be compared to the flow-induced release of NO in
the cardiovascular system, is an increased diffusion from potential storage sites of lipophilic
compounds such as the endothelial lining or muscle cells (Miekisch et al 2001).

A notable rise in concentration was also detected for methyl acetate. The possible
endogenous origins of this ester have not yet been explored. However, it has recently been
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demonstrated that methyl acetate is released by human bronchial epithelial primary cells
in vitro (Filipiak et al 2010). Exogenous uptake can result from its widespread use as a solvent
as well as from different types of food (e.g. coffee (Lindinger et al 1998b)). This compound
was detected in the breath of all volunteers at concentrations of 0.04–3.2 ppb prior to the
workload (median: 0.5 ppb). In the case of all individuals we observed an abrupt increase in
concentration, usually by a factor of about 2–5 within approximately 1 min of pedalling (see
figure 3). Subsequently, either a new plateau was reached or concentrations slightly decreased
with the duration of exercise.

DMS appeared in the breath of all volunteers at concentrations ranging from 0.8 to
3.6 ppb during rest (median: 2.7 ppb) and was found to increase during exercise in four cases.
This rise in concentration, however, was not so pronounced like in the case of isoprene or
methyl acetate and amounted to 20–60%. Despite the relatively small response to exercise,
DMS remains a very interesting compound in our study. DMS is a relatively stable volatile
sulphur compound present in human breath. Endogenous production has been ascribed to
an incomplete metabolism of sulphur-containing amino acids, methionine and cysteine, in
the transamination pathway (Miekisch et al 2004). DMS is formed by the enzyme thiol
S-methyltransferase via the methylation of H2S and methyl mercaptane (Tangerman 2009).
This process can be considered as a detoxification mechanism, removing toxic sulphur species
from the tissues. DMS is the main cause of extra-oral halitosis (Tangerman 2009, Tangerman
and Winkel 2007) and elevated breath levels were observed in patients with cirrhosis, hepatitis
and hypermethioninemia.

Breath concentrations of 2-pentanone during rest were spread around a median value of
0.23 ppb and tended to approach a new steady state level during constant load exercise that
was 10–60% higher than the initial value prior to workload, see figure 2. This behaviour
closely resembles the profile of acetone (King et al 2009) (see also figure 3), which is not
unexpected due to the functional similarities of these two ketones. The endogenous source of
2-pentanone is still disputed. Similarly like methyl acetate, 2-pentanone could be shown to be
produced by human bronchial epithelial primary cells in vitro (Filipiak et al 2010). Elevated
breath levels have been associated with fasting (Statheropoulos et al 2006) and liver diseases
(Van den Velde et al 2008).

The concentration profiles of compounds identified by GC-MS analysis might be
reconfirmed by monitoring their expected PTR-MS signal (i.e. count rate at a mass-to-
charge ratio equal to the respective molecular weight + 1). Such an approach is limited
to species that are protonated in PTR-MS, i.e. which have higher proton affinities than water
(166.5 kcal mol−1). Representative results for methyl acetate (MW 74) are shown in figure 3.
Here, PTR-MS count rates were converted to pseudo concentrations (Schwarz et al 2009a) and
scaled to match the initial GC-MS results at the start of measurement. For correction purposes,
room air levels were subtracted from the corresponding signals before conversion. Apart from
methyl acetate, propionic acid and butanol appear at m/z 75 in PTR-MS measurements. The
agreement between PTR-MS and GC-MS supports the view that in the framework of breath
gas analysis of normal volunteers a major part of PTR-MS signal variability at m/z 75 can be
attributed to the dynamics of methyl acetate.

4. Conclusion

In general, we believe that several valuable pieces of information can be distilled from the
phenomenological study of breath VOC behaviour during distinct physiological states.

As has been indicated in the introduction, rather specific but yet very promising fields of
application are pulmonary function tests based on the joint exhalation kinetics of an ensemble
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of pre-selected blood-borne inert gases. Within this context, a major focus lies on developing
a less invasive extension of standard MIGET methodology, which aims at avoiding the
exogenous infusion of test gases and replacing them with endogenous compounds originating
from normal metabolic activity. The success of such an approach will primarily depend on
the extent to which possible test compounds proposed for this purpose can be considered to
follow the underlying Farhi description. For instance, it has recently been pointed out that
highly water-soluble VOCs (including the standard MIGET test gas acetone) will not represent
an adequate choice within this framework since the associated end-tidal concentrations can
be expected to differ drastically from the respective alveolar levels (Anderson and Hlastala
2010). This is due to substantial interactions of such compounds with the water-like mucus
layer lining the conducting airways, commonly referred to as the wash-in/wash-out effect
(Anderson et al 2003, 2006). As a phenomenological consequence of this fact, it has
been demonstrated that end-tidal exhalation dynamics of highly water-soluble compounds
in response to distinct experimental conditions (e.g. exercise, hyperventilation or isothermal
rebreathing) will substantially depart from the trend predicted by the Farhi equation (King
et al 2009, O’Hara et al 2008). For instance, acetone concentrations in end-tidal breath tend to
increase in response to increased ventilation (see, e.g., figure 3), rather than showing a roughly
stable behaviour as anticipated from the classical theory by Farhi.

Analogous tests for low (blood) soluble compounds are straightforward and can be used
for directly revealing deviations from the assumptions underlying MIGET methodology (see
also the comparison between isoprene and butane presented above). In this sense, profiles of
VOCs acquired in the course of dynamic experiments offer the possibility of actively scanning
for breath constituents that qualify as (endogenous) MIGET gases as well as to assess the
adequacy of potential test compounds.

In the same spirit, we stress the fact that investigations covering dynamic VOC behaviour
are a general and necessary tool for gaining novel quantitative perspectives on the inherent
variability of VOC concentrations stemming from (short-term) physiological changes. This
knowledge is of utmost importance for everyday measurement practice in exhaled breath
analysis, as slightly changing experimental conditions (regarding, e.g., body posture, breathing
patterns, etc) or even pre-measurement history (stress, physical exhaustion) can have a
substantial impact on the observed breath concentration (Cope et al 2004). It moreover
will be helpful for devising appropriate sampling regimes as well as for comparing results
obtained under different experimental protocols (Cope et al 2004, Miekisch et al 2008, O’Hara
et al 2008).

Even though instruments for real-time breath analysis can be seen as canonical choice
for the parallel assessment of physiological (e.g. hemodynamic and respiratory) factors and
VOC time response, explorative measurements within this framework necessarily require a
combination with GC-MS, ensuring an unambiguous identification of the detected compounds.
Here, we presented a methodology for direct manual breath sampling and subsequent
SPME/GC-MS analysis during free tidal breathing under dynamic conditions. Moreover,
we investigated a limited list of compounds revealing interesting rest-to-work transitions in
response to moderate exercise. Continuous PTR-MS isoprene profiles were used as reliable
control for confirming the quality of the manually extracted samples. Further efforts will
need to take into account a larger variety of trace gases as well as experimental conditions
(e.g. isothermal rebreathing (Ohlsson et al 1990)). In this sense, we recognize that our data
only reflect very preliminary results that hopefully will guide future investigations in this
framework.
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a b s t r a c t

Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of

ongoing metabolic or physiological processes. While research into the diagnostic potential and general

medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far

to a sound analysis of the quantitative relationships between breath levels and the underlying

systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath

dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble,

blood-borne VOCs.

Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes

of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental

description of these profiles is developed. By comparison with experimental data it is inferred that the

major part of breath isoprene variability during exercise conditions can be attributed to an increased

fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood

concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an

extrahepatic tissue source of isoprene are presented.

Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected

to aid further investigations regarding the exhalation, storage, transport and biotransformation processes

associated with this important compound.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Breath gas analysis and modeling

Human breath contains a myriad of endogenous volatile
organic compounds (VOCs), appearing in the exhalate as a result
of normal metabolic activity or pathological disorders. The
detection and quantification of these trace gases seems to fulfill
all the demands and desires for non-invasive investigation and
has been put forward as a versatile tool for medical diagnosis,
biomonitoring of disease and physiological function or assess-
ments of body burden in response to medication and environ-
mental exposure (Amann and Smith, 2005; Amann et al., 2007,

2004; Buszewski et al., 2007; Rieder et al., 2001; Miekisch and
Schubert, 2006; Pleil, 2008). With the advent of powerful new
mass spectrometric techniques over the last 15 years, exhaled
breath can nowadays be measured on a breath-by-breath
resolution, therefore rendering breath gas analysis as an optimal
choice for gaining continuous information on the metabolic and
physiological state of an individual.

Within the framework sketched above, the success of using VOC
breath concentration profiles for tracking endogenous processes will
hinge on the availability of adequate physical descriptions for the
observable exhalation kinetics of the trace gas under scrutiny.
Some major breath constituents have already been investigated in
this form, e.g., during exercise conditions or exposure scenarios
(King et al., 2010b; Mörk and Johanson, 2006; Anderson et al., 2003;
Kumagai and Matsunaga, 2000; Pleil et al., 2005). Nevertheless,
VOC modeling remains a challenging task due to the multifaceted
impact of physiological parameters (such as cardiac output or
breathing patterns, Cope et al., 2004) as well as due to the sparse and
often conflicting data regarding potential sources or sinks of such
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substances in the human body. This paper will be devoted to a
thorough study of the end-tidal breath dynamics associated with
isoprene, which ranks among the most notable compounds studied
in the context of breath gas analysis.

1.2. Isoprene: a survey on physiologically relevant facts

Isoprene, also known as 2-methyl-1,3-butadiene (CAS number
78-79-5), is an unsaturated hydrocarbon with a molar mass of
68.11 g/mol and a boiling point of 34 1C. Isoprene is the most
abundant biogenic hydrocarbon emitted by the earth’s vegetation
and it is also the major hydrocarbon that is endogenously produced
by mammals (Gelmont et al., 1981). Its primary source in man
has been attributed to the mevalonate pathway of cholesterol
biosynthesis (Deneris et al., 1984). Originating from acetyl-CoA,
mevalonate is transformed into dimethylallyl pyrophosphate
(DMPP). Subsequently, isoprene can be derived from DMPP via an
acidic decomposition demonstrated to occur in the cytosol of
hepatocytes from rat liver in vitro (Deneris et al., 1984). However,
whether this final non-enzymatic pathway prevails in the formation
of isoprene under physiological conditions continues to be a
controversial issue. As has been suggested by several authors, an
enzymatic step might catalyze the conversion of DMPP to isoprene
in humans (Stone et al., 1993; Miekisch et al., 2004; Taucher et al.,
1997), similar to the isoprene synthase reaction seen in the
chloroplasts of plants and trees (Silver and Fall, 1995). In this
context, possible extrahepatic sites of isoprene production remain to
be elucidated. Metabolization of isoprene in mammals primarily
rests on epoxidation by cytochrome P450-dependent mono-oxyge-
nases (Monte et al., 1985; Watson et al., 2001), whereby significant
species differences can be observed (Filser et al., 1996; Csanády and
Filser, 2001; Bogaards et al., 2001). In particular, bioaccumulation in
man has been investigated within the framework of toxicological
inhalation studies (Filser et al., 1996).

Due to its volatility and low affinity for blood (as reflected by a
small blood:gas partition coefficient of lb:air ¼ 0:75 at body
temperature (Filser et al., 1996; Karl et al., 2001), isoprene is
highly abundant in human breath and accounts for up to 70% of
total hydrocarbon removal via exhalation (Gelmont et al., 1981).
Furthermore, it can relatively easily be quantified using a variety
of methodologically distinct analytical techniques (Kushch et al.,
2008; Ligor et al., 2008; Miekisch and Schubert, 2006; Turner
et al., 2006; King et al., 2010a). Apart from being a convenient
choice in terms of measurability, breath isoprene has received
widespread attention in the literature due to the fact that it may
serve as a sensitive, non-invasive indicator for assaying several
metabolic effects in the human body (see Salerno-Kennedy and
Cashman, 2005, for an extensive review).

Most notably, being a by-product of cholesterol biosynthesis as
outlined above, breath isoprene has been put forward as an
additional diagnostic parameter in the care of patients suffering
from lipid metabolism disorders such as hypercholesterolemia.
The fact that cholesterol-lowering drugs reduce isoprene output
confirms the in vivo relevance of this (Stone et al., 1993; Karl
et al., 2001). Moreover, interesting relationships between the
mevalonate pathway and cell proliferation as well as DNA
replication have been discovered (Salerno-Kennedy and Cashman,
2005; Rieder et al., 2001; Fritz, 2009; Brown and Goldstein, 1980).
Further evidence points toward a strong linkage of breath
isoprene levels to different physiological states, thus promoting
its general use in biomonitoring, e.g., during sleep or in an
intraoperative setting (Amann et al., 2005; Cailleux et al., 1993;
Pabst et al., 2007). Despite this huge potential, isoprene breath
tests have not yet reached the level of routine clinical methods
and are still under development. This is partly due to the fact that

drawing reproducible breath samples remains an intricate task
that requires further standardization. Furthermore, the decisive
mechanisms driving systemic and pulmonary gas exchange are
still poorly understood.

Isoprene concentrations in exhaled human breath exhibit a
large variability. In children and adolescents, isoprene excretion
in breath appears to increase with age (Taucher et al., 1997; Smith
et al., 2010) (with undetectable or very low levels in the breath
of neonates, Nelson et al., 1998), until reaching a gender- and
age-invariant end-tidal nominal value of about 100 ppb (approx.
4 nmol/l at standard ambient pressure and temperature) char-
acteristic for adults under resting conditions (Kushch et al., 2008).
Apart from the factors indicated in the previous paragraph, a
number of additional clinical conditions and external influences
have been reported to affect isoprene output, including renal
dialysis (Capodicasa et al., 1999, 2007; Lirk et al., 2003), heart
failure (McGrath et al., 2001), sleep/sedation (Cailleux and Allain,
1989; Amann et al., 2005) and exercise (Karl et al., 2001; King
et al., 2009). However, the physiological meaning of these changes
has not been established in sufficient depth.

Isoprene can be regarded as the prototype of an exhaled breath
VOC exhibiting pronounced rest-to-work transitions in response to
physical activity (Karl et al., 2001; King et al., 2009; Turner et al.,
2006). We recently demonstrated that end-tidal isoprene abruptly
increases at the onset of moderate workload ergometer challenges at
75 W, usually by a factor of about 3–4 compared with the steady
state value during rest. This phase is followed by a gradual decline
and the development of a new steady state after about 15 min of
pedaling (King et al., 2009), see also Fig. 1. Since endogenous
isoprene synthesis as discussed above has been attributed to
pathways with much larger time constants, common sense suggests
that the aforementioned rise in isoprene concentration is not due to
an increased production rate in the body, but rather stems from
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Fig. 1. Typical smoothed profiles of end-exhaled isoprene concentrations and

physiological parameters in response to two-legged ergometer exercise at 75 W.

Data are taken from King et al. (2009) and correspond to one single healthy male

volunteer (26 years, 72 kg bodyweight). Workload segments are shaded in grey.
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changes in hemodynamics or changes in pulmonary function. In this
sense, isoprene might also be thought of as a sensitive marker for
quantifying fluctuations in blood and respiratory flow.

With the background material of the previous paragraphs in
mind, we view isoprene as a paradigmatic example for the analysis
of low-soluble, blood-borne VOCs, even though it cannot cover the
whole spectrum of different physico-chemical characteristics. The
emphasis of this paper lies on examining the physiological processes
underlying the above-mentioned peak shaped response of end-tidal

isoprene at the onset of exercise by developing a mechanistic
description of the observable exhalation kinetics in normal healthy
volunteers. The physical model to be presented here aims at yielding
further insights into the flow and distribution route of isoprene in
various parts of the human body. Such a quantitative approach is
imperative for assessing the relevance and predictive power of
extracted breath isoprene concentrations with respect to the
endogenous situation and is expected to enhance the fundamental
understanding of the physiological role of isoprene in a variety of
experimental scenarios.

2. Experimental basics

2.1. Setup

End-tidal isoprene concentration profiles are obtained by means
of a real-time setup designed for synchronized measurements of
exhaled breath VOCs as well as a number of respiratory and
hemodynamic parameters. Our instrumentation has successfully
been applied for gathering continuous data streams of these
quantities during ergometer challenges as well as in a sleep
laboratory setting. These investigations aim at evaluating the
impact of breathing patterns, cardiac output or blood pressure on
the observed breath concentration and permit a thorough study of
characteristic changes in isoprene output following variations in
ventilation or perfusion. We refer to King et al. (2009) for an
extensive description of the technical details as well as for the
various protocols under scrutiny.

In brief, the core of the mentioned setup consists of a head
mask spirometer system allowing for the standardized extraction
of arbitrary exhalation segments, which subsequently are directed
into a Proton-Transfer-Reaction mass spectrometer (PTR-MS,
Ionicon Analytik GmbH, Innsbruck, Austria) for online analysis.
This analytical technique has proven to be a sensitive method for
the quantification of volatile molecular species M down to the ppb
(parts per billion) range by taking advantage of the proton
transfer

H3Oþ þM-MHþ þH2O

from primary hydronium precursor ions (Lindinger et al., 1998a,b).
Note that this ‘‘soft’’ chemical ionization scheme is selective to
VOCs with proton affinities higher than water (166.5 kcal/mol),
thereby precluding the protonation of the bulk composition
exhaled air, N2, O2 and CO2. Count rates of the resulting product
ions MH+ or fragments thereof appearing at specified mass-to-
charge ratios m/z can subsequently be converted to absolute
concentrations of the compound under scrutiny. Specifically,
protonated isoprene is detected in PTR-MS at m/z¼69 and can be
measured with breath-by-breath resolution. For further details
regarding quantification and the underlying PTR-MS settings used
the interested reader is referred to Schwarz et al. (2009) and
King et al. (2009), respectively. From the viewpoint of quality
control, isoprene time profiles obtained with the setup described
above have recently been cross-validated by means of GC–MS
(gas chromatography, using solid phase micro-extraction as a
pre-concentration step) and manually extracted breath samples

(King et al., 2010a). Table 1 summarizes the measured variables
relevant for this paper. In general, breath concentrations will
always refer to end-tidal levels. An underlying sampling interval of
5 s is set for each parameter.

2.2. Recent results and heuristics

This section serves to collect some experimental evidence
supporting the hypothesis of a peripheral tissue source of
isoprene formation in man, derived from dynamic breath
concentration measurements under exercise conditions. The
rationale given here mainly builds on our earlier phenomenolo-
gical studies in King et al. (2009, 2010a). Complementary
experiments will be indicated where appropriate. All results are
obtained in conformity with the Declaration of Helsinki and with
the necessary approvals by the Ethics Commission of Innsbruck
Medical University.

Investigating an ensemble of eight normal healthy volunteers,
King et al. (2009) recently demonstrated that isoprene evolution
in end-tidal breath exhibits a very reproducible and consistent
behavior during moderate exercise scenarios. For perspective,
Fig. 1 shows typical results corresponding to a bicycle ergometer
challenge of one single volunteer under a constant workload of
75 W with several periods of rest.

Generally, starting from a steady state value of about 4 nmol/l
during rest, isoprene concentrations in end-tidal air exert a
pronounced peak at the onset of exercise (corresponding to an
increase by a factor of up to 4). This phase is followed by a gradual
decline and the development of a new steady state after
approximately 15 min of pedaling. Interestingly, by repeating
this regime, the peak size after intermediate exercise breaks can
be demonstrated to depend on the duration of the resting phase,
despite almost identical profiles of cardiac output and alveolar
ventilation. Full recovery of the initial height requires about 1 h of
rest. A valid model for the description of isoprene concentrations
in end-tidal air should be able to faithfully reproduce this
wash-out behavior.

The aforementioned peak shaped behavior of isoprene has
mainly been attributed to its low blood:gas partition coefficient
lb:air ¼ 0:75. According to classical pulmonary inert gas elimina-
tion theory (cf. Appendix A), the low affinity for blood implies a
high sensitivity of the associated breath concentrations with
respect to changes in ventilation or perfusion. More specifically,
the basic Farhi equation (A.3) predicts that, other factors
being equal, increasing/decreasing the alveolar ventilation will
decrease/increase exhaled breath concentrations (due to
increased/decreased dilution), whereas the relationship between
breath concentrations and cardiac output is monotonic and
reflects dependence on supply. Using similar reasoning, Karl
et al. (2001) proposed a simple quantitative description of breath
isoprene concentration time courses during exercise, which is
now widely accepted as ‘‘standard model’’. However, as has
already been argued in King et al. (2009), their formulation is
deficient in several regards. A principal criticism is that the
model of Karl et al. essentially relies on a markedly delayed rise
of alveolar ventilation with respect to pulmonary blood flow,

Table 1
Summary of measured parameters together with some nominal values during rest,

assuming ambient conditions; breath concentrations refer to end-tidal levels.

Variable Symbol Nominal value (units)

Cardiac output _Q c
6 (l/min) (Mohrman and Heller, 2006)

Alveolar ventilation _V A
5.2 (l/min) (West, 2005)

Isoprene concentration Cmeas 4 (nmol/l) (Kushch et al., 2008)
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a premise which clearly contrasts experimental evidence (see, e.g.,
Fig. 1 as well as Wagner, 1992; Lumb, 2005). The onset of the
ventilatory response to exercise is instantaneous and may actually
precede the latter (possibly being part of a learned response), so a
delay as required above is highly unlikely. Consequently, when
subjecting this model to real data streams including measured
profiles of pulmonary blood flow _Q c and alveolar flow _V A, it fails to
capture the observed isoprene data, see Fig. 4.

Further insights into the decisive components affecting
breath isoprene excretion can be gained by comparing its
dynamic behavior with the profiles of blood-borne VOCs expected
to show similar exhalation kinetics. In this context, it has recently
been pointed out that breath concentrations of endogenous
butane (considered to originate from protein oxidation and/or
bacteria production in the colon, Kharitonov and Barnes, 2002)
during ergometer exercise resemble the trend anticipated from
Eq. (A.3), while isoprene exhibits an entirely different qualitative
response (King et al., 2010a). This is certainly counter-intuitive, as
butane is widely comparable with isoprene in terms of various
functional factors expected to affect pulmonary gas exchange
(including, e.g., blood and tissue solubility as well as molecular
weight).

In light of this discrepancy, it can be conjectured that some
unknown substance-specific (release) mechanism has to be taken
into account for capturing the exhalation dynamics of isoprene. In
order to restrict the number of potential tissue sources for this
effect, in a series of auxiliary experiments the ergometer protocol
sketched above was modified as follows. Instead of pedaling with
both legs, we orchestrated several one-legged workload chal-
lenges on a standard ergometer, alternating between left and
right limb for doing the exercise. The heel of the non-working leg
rested on a small chair placed beside the bicycle. Special care was
taken to ensure a comfortable seating position of the volunteer so
that any contractive movement of the resting leg for stabilization
purposes could be avoided. The hand rest of the ergometer was
adjusted in such a way that the test subjects could maintain their
torso in an upright position throughout the measurement period,
with both arms stretched. A constant resistance of 50 W was
imposed for the entire experiment and pedaling cadence was
maintained at 60 rpm.

In total, five normal healthy volunteers (age 27–34 years,
4 male, 1 female) were recruited and investigated in this way.
No test subject reported any prescribed medication or drug
intake. No special restrictions regarding pre-experimental food
intake were applied, as this variable seems to have a negligible
effect on breath isoprene concentrations (Smith et al., 1999;
Kinoyama et al., 2008). However, volunteers were required to rest
at least 20 min prior to analysis due to the significant impact of
physical activity as discussed in Section 1.2. Within this time
informed consent was obtained regarding the experimental
protocol. Additional instrumentation and monitoring closely
followed the general procedure reported in King et al. (2009).
Fig. 2 shows a representative experimental outcome for one single

volunteer.
At the beginning, the qualitative response of end-tidal isoprene

concentrations closely resembles the situation presented in Fig. 1
for the two-legged case. After 10 min of pedaling with the left leg,
followed by a resting period of 4 min, a clear wash-out effect
becomes discernible, yielding a significantly lower peak height
when continuing the exercise with the same leg. However, if the
working limb is now switched to the right leg (after an
intermediate break of 4 min as before), an almost complete
recovery of the initial peak size can be observed (cf. the time
frame between 23 and 30 min in Fig. 2). On the contrary, it should
be noted that the associated rise in cardiac output and alveolar
ventilation is of comparable order within all three workload

phases. These basic characteristics could reliably be reproduced
within the entire collective of test subjects. In particular,
consistent results are obtained if the leg switch is from right
to left.

Combining the aforementioned findings provides a clear hint
that breath isoprene levels during exercise are linked to local
variations of gas exchange in peripheral tissue groups. In
particular, they open up a new line of supportive evidence for
peripheral production sites of isoprene as indicated in Section 1.2.
Furthermore, the common viewpoint that the breath isoprene
peaks characteristic for exercise conditions can mainly be traced
back to altered pulmonary gas exchange conditions (resulting, for
instance, from an impairment of cardiac output and ventilatory
drive, Karl et al., 2001) or local generation in the respiratory tree
(as in the case of NO release in the paranasal sinuses during
humming, Weitzberg and Lundberg, 2002) has to be rejected. As
will be discussed in the modeling sections below, we attribute the
observable wash-out behavior of isoprene to an increased
fractional perfusion of potential storage and production sites,
leading to higher levels of the mixed venous blood concentration
at the onset of physical activity. While the exact tissue groups
involved in this process remain speculative, possible origins might
include the skeletal locomotor muscles themselves but also the
walls of the vascular tree, both of which receive a disproportio-
nately high share of blood flow during exercise. There are some
indications in the literature that isoprene synthesis can play a role
at these sites (Miekisch et al., 2001; Brown and Goldstein, 1980).
However, further biochemical investigations will need to clarify
whether an appropriate metabolic pattern exists in these
extrahepatic tissues.

Fig. 2. Typical smoothed profiles of end-exhaled isoprene concentrations and

physiological parameters in response to one-legged ergometer exercise at 50 W.

Data correspond to one single healthy male volunteer (27 years, 75 kg body-

weight). Left and right leg exercise segments are shaded in light and dark grey,

respectively.
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3. Isoprene modeling

3.1. Preliminaries and assumptions

For the sake of maintaining a balance between tractability and
sufficient complexity of the model structure, we shall adopt the
usual compartmental approach in our attempts to describe the
end-tidal isoprene behavior outlined above. This approach consists
in dividing the body into an ensemble of roughly homogenous
tissue control volumes that are interconnected via the arterial and
venous network (Reddy et al., 2005; Leung, 1991; Gerlowski
and Jain, 1983; Fiserova-Bergerova, 1983). Previously developed
physiologically based descriptions of isoprene pharmacokinetics in
man and rodents can be found in Filser et al. (1996), NTP (1999),
Melnick and Kohn (2000), Bogaards et al. (2001). These mainly
centered on quantifying body burden in response to severe
environmental exposure (driven by concerns about the carcino-
genic potential of isoprene and/or its metabolites, Melnick et al.,
1994; NTP, 1999) and hence often neglected the relatively small
contribution of endogenous production to overall bioaccumulation.
In contrast, here we will mainly focus on the characteristics of
isoprene formation and distribution within specific body tissues
under normal physiological conditions. Similarly to the models
mentioned above, two major aspects of isoprene exchange will be
taken into consideration.

3.1.1. Pulmonary gas exchange

Following a general premise of classical pulmonary inert gas
elimination theory (see Appendix A), we postulate that uptake
and removal of isoprene takes place exclusively in the alveolar
region. In particular, any pre- and post-alveolar absorption and
release mechanisms occurring in the conductive airways (e.g., due
to interactions with the tracheo-bronchial lining fluid, Anderson
et al., 2003; Anderson and Hlastala, 2007; King et al., 2010b) are
assumed to be negligible, which is a reasonable requirement for
low-soluble VOCs such as isoprene (Anderson et al., 2003). The
lung function will be taken into account by considering one single
homogenous alveolar unit characterized by an averaged ventila-
tion–perfusion ratio close to one during resting conditions. While
this approach ignores the regional ventilation–perfusion scatter
throughout the lung, it constitutes a convenient simplification
that is justified by the need to keep the parameterization as
parsimonious as possible at this stage of the modeling phase.
Delivery and elimination of isoprene within the alveolar tract will
be governed by cardiac output _Q c and alveolar ventilation _V A,
respectively, thereby neglecting the small intrapulmonary shunt
and alveolar dead space fraction (Lumb, 2005). Owing to its
lipophilic characteristics and small molecular size, isoprene can
be assumed to rapidly pass through the alveolar tissue barrier, so
that an instantaneous diffusion equilibrium will be established
between end-capillary blood and the free gas phase. This is likely
to hold true also under moderate, sub-anaerobic exercise
conditions (Wagner, 2008). In the absence of chemical bindings
with blood it can thus be deduced that the concentration Ca of
isoprene in arterial blood leaving the lungs is proportional to the
concentration CA within the alveoli, viz.,

Ca ¼ lb:airCA: ð1Þ

Here, lb:air denotes the isoprene-specific blood:gas partition
coefficient as introduced in Section 1.2.

3.1.2. Body compartments

The systemic part of the model incorporates two well-mixed
functional units: a richly perfused tissue (rpt) compartment, lump-
ing together tissue groups with comparable blood:tissue partition

coefficient lb:rpt � 0:4 (viscera, brain, connective muscles, skin), as
well as a peripheral tissue compartment, representing an effective
buffer volume that acts as a reservoir for the storage of isoprene
(tentatively skeletal muscles). Both compartments are separated
into an intracellular space and an extracellular space (including the
vascular blood and the interstitial space), whereby a venous
equilibrium is assumed to hold at these interfaces. The relevant
blood:tissue partition coefficients are summarized in Table C1. Due
to the low fractional perfusion of adipose tissue, an extra fat
compartment was not considered.

In order to capture the redistribution of systemic perfusion
during bicycle ergometer exercise, fractional blood flow
qperAð0,1Þ to peripheral tissue is assumed to resemble fractional
blood flow to both legs. The latter increases with cardiac output
and will be modeled as

qperð
_Q cÞ :¼ qrest

per þðq
max
per �qrest

per Þ

� 1�exp �t max 0,
_Q c�

_Q
rest

c

_Q
rest

c

( ) ! !
, t40: ð2Þ

Reference values for the indicated variables can be found in
Table C1. For perspective, in the sequel we set qrest

per ¼ 0:08 and
qmax

per ¼ 0:7 (which approximately corresponds to the fractional
perfusion of both legs during bicycle exercise at 75 W, Sullivan
et al., 1989). The constant t will be estimated in Section 4.
Alternatively, the right-hand side expression in (2) might also be
replaced with a piecewise constant function taking values qrest

per

and qmax
per during rest and exercise, respectively.

As has been mentioned previously, the tissues contributing to iso-
prene formation are not fully established. In view of the biochemical
and experimental results in Sections 1.2 and 2.2, respectively, two
distinct non-negative production rates krpt

pr and kper
pr are incorporated

into the model. These values quantify potential hepatic and peripheral
sources of endogenous isoprene, the latter being interpreted as a
by-product of the biosynthesis of polyisoprenoid compounds, their
degradation, or both. While isoprene production in general appears to
be subject to diurnal variations (Cailleux and Allain, 1989; Amann
et al., 2005), within the typical experimental time frame considered
here both rates are treated as constant. Analogously, metabolization
of isoprene is described by conventional first order kinetics and will
be captured by introducing two rate constants krpt

met and kper
met,

reflecting cytochrome P450 activity in liver and extrahepatic tissues,
respectively (Filser et al., 1996). Other ways of isoprene clearance
such as excretion via the renal system are considered as long-term
mechanisms in this context and will thus be ignored. The specific
values for the production and metabolization rates introduced
above will have to be estimated based on experimental results
and may depend on the individual volunteer investigated. The latter
case would be particularly interesting in the light of the fact that
isoprene may reflect certain aspects of endogenous cholesterol
synthesis.

3.2. Model equations and a priori analysis

In order to capture the gas exchange and tissue distribution
mechanisms presented in the previous paragraphs, the model consists
of three different compartments. A sketch of the model structure is
given in Fig. 3 and will be detailed in the following. Model equations
are derived by taking into account standard conservation of mass
laws for the individual compartments. In view of the diffusion
equilibria postulated in Section 3.1, the compartment capacities are
governed by the effective volumes ~V A :¼ VAþVculb:air, ~V rpt :¼

VrptþVrpt,blb:rpt as well as ~V per :¼ VperþVper,blb:per. Nominal values
for the indicated parameters are given in Table C1.
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According to Fig. 3, the mass balance equation for the alveolar
compartment reads

~V A
dCA

dt
¼ _V AðCI�CAÞþ

_Q cðCv�CaÞ, ð3Þ

with CI denoting the inhaled (ambient) gas concentration, while
for the richly perfused and peripheral tissue compartment we find
that

~V rpt
dCrpt

dt
¼ ð1�qperÞ

_Q cðCa�lb:rptCrptÞþkrpt
pr �krpt

metlb:rptCrpt ð4Þ

and

~V per
dCper

dt
¼ qper

_Q cðCa�lb:perCperÞþkper
pr �kper

metlb:perCper, ð5Þ

respectively. Here, the associated concentrations in mixed venous
and arterial blood are given by

Cv :¼ ð1�qperÞlb:rptCrptþqperlb:perCper ð6Þ

and Eq. (1), respectively. Moreover, we state that the measured
(end-tidal) isoprene concentration equals the alveolar level, i.e.,

y :¼ Cmeas ¼ CA: ð7Þ

Note that in Eqs. (1) and (6) it is tacitly assumed that any
transport delays between tissues, heart and lung can be neglected.
A more refined formulation in this regard can be achieved by
considering delay differential equations, see for instance Batzel
et al. (2007).

Remark 1. For later purposes, we note that a model accommo-
dating the experimental situation during exhalation and inhala-
tion to and from a fixed volume exposure atmosphere can simply
be derived by augmenting Eqs. (3)–(5) with an additional
compartment obeying

~V I
dCI

dt
¼ _V AðCA�CIÞ: ð8Þ

This typically describes closed system (rebreathing) setups such
as in Filser et al. (1996).

Some fundamental model properties are discussed in Appendix B.
In particular, the components of the state variable c :¼ ðCA,Crpt,CperÞ

T

remain non-negative, bounded and will approach a globally
asymptotically stable equilibrium ceðuÞ once the measurable
external inputs u :¼ ð _V A, _Q c,CIÞ affecting the system are fixed. This
corresponds, e.g., to the situation encountered during rest or
constant workload, see Fig. 1. Analogous results can be established
for the augmented system incorporating Eq. (8), describing the
evolution of the composite state variable c :¼ ðCA,Crpt,Cper,CIÞ

T . In
this case, the corresponding equilibrium for fixed inputs will be
denoted by ceðuÞ.

4. Model validation and estimation

4.1. Comparison with ergometer datasets

In this section we calibrate the proposed model based on the
physiological data presented in Fig. 1, corresponding to one single

representative volunteer breathing an atmosphere free of isoprene
(i.e., we set CI � 0 in the sequel). It will turn out that the model
appears to be flexible enough to capture the isoprene profiles in
exhaled breath generally observed during moderate workload
ergometer challenges as conducted in King et al. (2009). Moreover,
our formulation provides a preliminary basis for estimating some
of the unspecified parameters pjAfk

rpt
pr ,kper

pr ,krpt
met,k

per
met,t, ~V perg from

the knowledge of measured breath concentrations y. More
specifically, our aim is to (at least partially) determine the
subject-dependent parameter vector

p¼ ðkrpt
pr ,kper

pr ,krpt
met,k

per
met,t, ~V perÞ

as well as the nominal endogenous steady state levels c0 ¼ cðt0Þ by
solving the ordinary least squares problem

argmin
p,c0

Xn

i ¼ 0

ðyi�CAðtiÞÞ
2

ð9Þ

subject to the constraints

gðu0,p,c0Þ ¼ 0 ðsteady stateÞ,

p,c0Z0 ðpositivityÞ,

ce
4
ðu0,pÞ ¼ 25 nmol=l ðexposure steady stateÞ:

8><
>: ð10Þ

Here, g is the right-hand side of the ODE system (3)–(5) (see
also (B.1)) and yi ¼ Cmeas,i is the measured end-tidal isoprene
concentration at time instant ti (t0 ¼ 0). The solution point will be
denoted by ðp�,c�0Þ. For perspective, the last constraint has been
introduced in order to account for additional information regarding
the biotransformation of isoprene available on the basis of
toxicological inhalation studies (Filser et al., 1996). As has been
demonstrated there for an ensemble of four normal healthy test
subjects, isoprene concentrations in a closed rebreathing chamber
of fixed volume will plateau at a level of approximately 600 ppb
after about 2 h of quiet tidal breathing at rest, irrespective of the
initial amount of isoprene present in the system. The extracted
parameters will be adjusted to automatically meet this boundary
condition, thereby maintaining consistency with the aforemen-
tioned experimental findings.

For simulation purposes the measured physiological functions
_V A and _Q c were converted to input function handles u by
applying a local smoothing procedure to the associated data and
interpolating the resulting profiles with splines. Tissue volumes
and partition coefficients are as in Table C1. In particular, while
the peripheral compartment so far has been treated as an abstract
control volume without particular reference to any specific tissue

CI CA

V̇A

alveolar
compartment

Q̇
c

CA

VA

Cc

Vc

richly perfused
tissue compartment

Crpt,b

Vrpt,b

Crpt

Vrpt

(1 − qper)Q̇c

qperQ̇c

krpt
met

krpt
pr

peripheral tissue
compartment

Cper,b

Vper,b

Cper

Vper

kper
met

kper
pr

Fig. 3. Sketch of the model structure. The body is divided into three distinct

functional units: alveolar/end-capillary compartment (gas exchange), richly

perfused tissue (metabolism and production) and peripheral tissue (storage,

metabolism and production). Dashed boundaries indicate a diffusion equilibrium.

Abbreviations connote as in Table C1.
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group, for identifiability reasons we now set lb:per ¼ 0:5, which
corresponds to the in vitro blood:tissue partition coefficient for
muscle (Filser et al., 1996). Note, however, that this choice is
rather arbitrary, cf. Remark 4.

The above minimization problem (9) was solved by implement-
ing a multiple shooting routine (Bock, 1987) in Matlab. This
iterative method can be seen as a generalization of the standard
Gauss–Newton algorithm, designed to avoid divergence issues of
the latter due to large residuals. For further details as well as
convergence and stability properties we refer to Bock (1981) and
Peifer and Timmer (2007). The necessary derivatives of the
trajectories with respect to p and c0 were computed by simulta-
neously solving the associated variational equations (Hairer et al.,
1993). Convergence was assumed to be achieved when the
maximum componentwise relative change between two successive
iterations was less than 0.1%. Fig. 4 summarizes the results of these
calculations. Fitted parameter values and initial conditions are
given in Table 2.

All estimated quantities for the test subject under scrutiny take
values in a physiologically plausible range. According to Eqs. (1)
and (6), arterial and mixed venous blood concentrations at the
start of the experiment are estimated as Cað0Þ ¼ 4:5 nmol=l and
Cv ð0Þ ¼ 10:6 nmol=l, respectively, which is in direct agreement
with available data from the literature (cf. Table C1). Total
endogenous production equals approximately 125 nmol/min,
which is comparable to previous predictions ranging from 2.5 to
5.7 nmol/min/kg bodyweight (Hartmann and Kessler, 1990; Filser
et al., 1996). Moreover, the estimated value for ~V per is close to
experimentally measured thigh muscle volumes (see Tothill and
Stewart, 2002, for instance).

For the sake of comparison, in Fig. 4 we also show the outcome
of the model by Karl et al. subjected to the time courses of _V A and
_Q c as above (assuming the same end-tidal steady state value of

6 nmol/l at rest). As has been indicated in Section 2.2, the

associated predictions result in a poor representation of the
observed data.

The local identifiability of the extracted estimates in Table 2
was investigated by checking the non-singularity of the informa-
tion matrix Q :¼ ST S, where S is the sensitivity function matrix
having rows

Si,� :¼
@yðti�1,p�,c�0Þ

@p

@yðti�1,p�,c�0Þ

@c0

� �
: ð11Þ

More specifically, we adopted the standard numerical rank
criterion

rank Q ¼maxfk; sk4eJQJ1g, ð12Þ

where s1Zs2Z � � �Z0 are the singular values of Q and e¼ 10�8

denotes the maximum relative error of the calculated sensitivities
(Golub and Van Loan, 1996). Accordingly, we find that Q has full
rank, suggesting that all estimated quantities are practically
identifiable (Cobelli and DiStefano, 1980). However, some degree
of ill-conditioning is present as can be concluded from calculating
the approximate posterior correlation matrix R defined by

Ri,j :¼ Q�1
i,j ðQ

�1
i,i Q�1

j,j Þ
�1=2A ½�1,1�: ð13Þ

The entry Ri,j quantifies the degree of interplay between the ith
and jth parameter (initial condition) under scrutiny.

A value of Ri,j near +1 or �1 indicates that it may be difficult to
estimate both parameters separately, as changes in the model
output caused by perturbing one of these parameters can nearly
be compensated by an appropriate perturbation of the other
(Jacquez and Perry, 1990; Seber and Wild, 2003; Rodriguez-
Fernandez et al., 2006). The highest correlation is achieved for the
pair ðkrpt

pr ,krpt
metÞ, with an associated value of 0.995. This indicates a

poor estimability of the above-mentioned two parameters if only
the breath isoprene dynamics in Fig. 4 are taken into account.
However, the constraints in (10) provide additional information
on krpt

pr and krpt
met that will prove sufficient for guaranteeing the

extraction of reliable estimates. Alternatively, such identifiability
issues might also be circumvented by designing multi-experimental
regimes guaranteeing a sufficiently large and independent influence
of all parameters under scrutiny (for instance, by complementing
ergometer challenges with closed chamber rebreathing protocols
as indicated above). The absolute value of all other pairwise
correlations is below 0.9.

A ranking of the fitted parameters and initial conditions with
respect to their impact on the model output can be obtained by
numerically approximating the squared L2-norm of the normalized

Fig. 4. First panel: simulation of end-tidal isoprene behavior during exercise

conditions, cf. Fig. 1. Second panel: predicted concentrations in mixed venous

blood (Cv ) and venous blood returning from the peripheral (lb:perCper) and richly

perfused tissue groups (lb:rptCrpt). Third panel: predicted profile of fractional

peripheral blood flow qper according to Eq. (2).

Table 2
Decisive model parameters resulting from the fit in Fig. 4.

Variable Symbol Fitted value (units) CV

Production rpt krpt
pr

20.8 (nmol/min) 16

Production periphery kper
pr 104.5 (nmol/min) 3

Metabolism rate rpt krpt
met

3.6 (l/min) 8

Metabolism rate periphery kper
met

0.96 (l/min) 7

Constant Eq. (2) t 2.1 12

Tissue volume periphery ~V per 9.2 (l) 8

Initial concentration alveoli CAð0Þ 6 (nmol/l) 3

Initial concentration rpt Crptð0Þ 12.5 (nmol/l) 6

Initial concentration periphery Cperð0Þ 150 (nmol/l) 5

The corresponding variation coefficients (CV, in %) were obtained by calculating

bootstrap standard errors from the repeated fits of B¼100 resampled datasets.
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sensitivities, viz.,

BðpjÞ :¼

Z tn

t0

@yðt,p�,c�0Þ

@pj

p�j
maxsjyðsÞj

� �2

dt, ð14Þ

and similarly for the components of c0. A graphical comparison of
these sensitivity indices is given in Fig. 5, revealing a strong
influence of kper

pr , Cperð0Þ and ~V per on the predicted breath isoprene
profile. This is intuitively reasonable as these quantities govern
the shape of the observed isoprene peak during exercise.

Contrarily, only minor effects are seen when varying the
(poorly determined) parameters krpt

pr and krpt
met. In fact, it should be

pointed out that production and metabolization in the richly
perfused tissue group are not needed for producing a satisfactory
fit of the data given in Fig. 4. However, we refrained from
generally eliminating these variables as they play a major role in
isoprene distribution during resting conditions (when blood flow
is directed mainly to the richly perfused tissue compartment). In
particular, they ensure the consistency of the model with closed
chamber rebreathing scenarios as discussed before. From the
ensemble of fixed model parameters, the most influential
quantities (having a sensitivity index value greater than 0.25
according to Eq. (14)) are the maximum fractional perfusion to
peripheral tissue (Bðqmax

per Þ ¼ 0:88), the partition coefficient
between blood and peripheral tissue (Bðlb:perÞ ¼ 0:6) and the
blood:gas partition coefficient (Bðlb:airÞ ¼ 0:26). These variables
should be given special attention when applying the proposed
model to a larger study population as they require a careful
assessment with respect to inter-individual variations.

In order to give some insight into the information content of
the extracted parameter values, approximate standard errors
were constructed by employing a variant of residual bootstrapping

(Dogan, 2007; Huet et al., 2003, Section 2.3.5). For an excellent
overview of resampling techniques in general the interested
reader is referred to Shao and Tu (1995), while a recent
comparison between standard asymptotic theory and bootstrap-
ping for uncertainty quantification in inverse problems can be
found in Banks et al. (in press).

In particular, this method allows for taking into account
autocorrelations detected among the model residuals

ri :¼ yi�yðti,p
�,c�0Þ, i¼ 0, . . . ,n: ð15Þ

Such autocorrelation patterns can be seen as a general feature of
dense time course, ventilation-related data streams (Liang et al.,

1996) and neglecting their presence typically tends to distort
variance assessments of least squares estimates derived from
conventional covariance matrix approximations (Seber and Wild,
2003; Davidian and Giltinan, 1995). Adopting the general
procedure suggested by Dogan (2007), we first use standard
techniques from time series analysis (see, e.g., Box et al., 1994) to
model the interdependence between the ri via an autoregressive
process of order two, viz.,

ri ¼ ari�1þbri�2þ ~r i: ð16Þ

Plots of the resulting ~r i versus time clearly exhibit random
patterns, thereby suggesting that the former can be treated as
independent and homoscedastic realizations of the underlying
error process. Furthermore, a Ljung–Box portmanteau test (Ljung
and Box, 1978) confirmed the lack of statistically significant
autocorrelations. We can hence conclude that the error terms ~r i

are interchangeable.
Consequently, a single bootstrap dataset yb :¼ ðyb

0, . . . ,yb
nÞ may

be generated by the following procedure: we draw n�1 samples
from a uniform discrete distribution over the set f~r i; i¼ 0, . . . ,ng.
The results are combined to yield a vector ð~rb

2, . . . , ~rb
nÞ, from which

yb is obtained via Eqs. (16) and (15) (we set rb
i :¼ ri for i¼0,1). This

resampled dataset is then plugged into the minimization
procedure (9) to arrive at new estimates ðp�,b,

0 c�,b0 Þ. Repeating the
above step B times generates a population of B fits for each
component of p and c0, reflecting the sensitivity of these
estimates with respect to the given data. Approximate standard
errors might then be computed from the empirical variances
associated with these populations. Here, we use B¼100.

The variation coefficients in Table 2 suggest that under the
constraints imposed in (10) all unknown parameters and initial
conditions might be determined from the individual breath
concentration data in Fig. 1 with reasonable accuracy. While
this confirms that inference on endogenous isoprene kinetics by
virtue of exhaled breath measurements is potentially feasible, it
must be emphasized that the extracted values are clearly model-
dependent. In particular, additional modeling efforts investigating
a more refined compartmentalization and description of
perfusion patterns as in Eq. (2) will be imperative before such
estimates can become practically relevant. Moreover, further
experimental evidence needs to be gathered with respect to
(fixed) physiological parameters that are known to drastically
affect the model output. Sensitivity and identifiability methodol-
ogies as indicated above can guide these tasks (see also Brun et al.,
2002; Cintrón-Arias et al., 2009; Hengl et al., 2007). In this sense,
the preceding analysis should merely be seen as a preliminary
proof of concept, that primarily aims at proposing a novel
qualitative description of the normal physiological flow of
isoprene rather than at drawing further quantitative conclusions
with respect to the indicated estimates.

Moreover, we again stress the fact that the fitting procedure
above has been carried out for one single representative
volunteer only, inasmuch as our major goal was to demonstrate
the principal explanatory power of the proposed model for
capturing the presented breath isoprene behavior. The population
spread of the fitted parameters within the larger study cohort
investigated by King et al. (2009) might be assessed by a Bayesian
(see Mörk et al., 2009, for instance) or mixed effects approach
(Kuhn and Lavielle, 2005), which, however would be beyond the
scope of this paper.

Remark 2. For the sake of completeness, we briefly note that a
formal description of the experimental situation during the
one-legged ergometer trials as in Section 2.2 can be obtained by
simply augmenting the model with a copy of Eq. (5). For
symmetry reasons, each of these two peripheral compartments

Fig. 5. Squared L2-norm of the normalized model sensitivities (cf. Eq. (14)) with

respect to the fitted parameters in Table 2.
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(interpreted as left and right leg) might then be assigned 50% of
the volume ~V per, nominal fractional blood flow qper, production
kper

pr and metabolization rate kper
met as given in Tables 2 and C.1 (note

that the initial steady state concentrations remain unchanged).
Consequently, by alternately distributing increased fractional
perfusion during the individual exercise segments to either one
of these compartments, a good qualitative agreement with the
data shown in Fig. 2 can be achieved.

4.2. Physiological interpretation

The second panel in Fig. 4 clearly reveals the physiological
mechanism underlying the peak shaped dynamics of breath
isoprene concentrations in response to constant load exercise.
During rest, the peripheral compartment is characterized by high
isoprene concentrations resulting from extrahepatic production
according to kper

pr . However, due to the minute fractional blood
flow qrest

per to these tissues, mixed venous concentrations are mainly
governed by the lower values in venous blood from the rpt group.
As soon as fractional perfusion in the periphery increases as a
result of exercise hyperemia, mixed venous concentrations
become dominated by peripheral venous return. The isoprene
peak visible in mixed venous blood and breath is an immediate
consequence of this transition. Subsequently, a depletion of the
peripheral tissue compartment and hence a decline in mixed
venous blood concentration can be observed. As a matter of fact, if
_V

work

A and _Q
work

c are maintained at a roughly fixed level reflecting
some constant workload, the compartmental concentrations will
approach a new steady state ceðuworkÞ, which is attained after
about 15 min of pedaling, cf. Section 2.2. When the workload
is stopped, perfusion will be redistributed according to the
compartmental shares at rest and the peripheral isoprene buffer
will be replenished. If exercise is continued before this process is
completed, the corresponding isoprene peak will be lower than at
the start of the first exercise segment, despite a similar response
of ventilation and perfusion. This clarifies the wash-out behavior
discernible in repeated workload segments. In the special
situation of Fig. 4, starting from the final state at t¼20 min
(using the fitted parameter values in Table 2 and applying the
physiological inputs u0 corresponding to resting conditions) the
time required until all compartmental concentrations are within
1% of their initial level c0,i can be simulated as approximately
58 min. This is consistent with experimental observations
(King et al., 2009).

In other words, according to the preceding rationale the major
part of breath isoprene variability during ergometer challenges
can be attributed to varying fractional contributions of distinct
compartmental levels to the mixed venous blood concentration
Cv . The aforementioned reasoning compares favorably with the
fact that peripheral venous blood concentrations (median
30 nmol/l; range 15–70 nmol/l, Cailleux et al., 1992) appear to
be significantly higher than mixed venous ones (median 9 nmol/l;
range 0.5–24 nmol/l, Miekisch et al., 2001). In particular, note
that with the present model the observed isoprene dynamics can
be explained assuming constant endogenous production rates,
which agrees with the intuitive perception of isoprene synthesis
as a slowly varying process. In this sense, the aforementioned
putative mechanism optimally respects a wide spectrum of
fundamental phenomenological as well as physiological boundary
conditions. From a practical point of view, the intimate ties
between compartmental hemodynamics and endogenous iso-
prene flow put forward by the previous analysis might render
breath isoprene as a promising new parameter for studying
vascular control and the redistribution of blood flow during
exercise.

Remark 3. A word is in order regarding the necessity of
introducing a hypothetical production rate kper

pr for ensuring the
formation of a systemic isoprene pool. To this end, consider an
arbitrary non-producing and non-metabolizing body compart-
ment which may essentially be characterized by a mass balance
equation of the form (5), with kper

pr and kper
met set to zero

(the index ‘‘per’’ is kept merely for notational convenience). As
steady state conditions can be assumed to hold during rest
(see Section 2.2), the initial venous concentration Cperð0Þlb:per of
isoprene associated with this compartment will be equal to the
incoming arterial concentration Cað0Þ of the compound. Adopting
the above notation we thus find that

Cperð0Þlb:per ¼ Cað0ÞrCv ð0Þ: ð17Þ

The last inequality is a consequence of the algebraic steady state
relation associated with the alveolar compartment (cf. Eq. (A.3),
which is a standard mass balance equation for gas exchange in the
lung). Hence, when switching to an increased fractional perfusion
of such body compartments as a result of exercise, the mixed

venous return will become enriched with blood having isoprene
concentrations close to the previous arterial level during rest. In
other words, Cv will fall rather than rise. Using this simple but
general rationale it is clear why previous models of isoprene
pharmacokinetics such as in Filser et al. (1996) fail to reproduce
the peak-shaped behavior of breath isoprene during exercise,
even if differential blood flow is taken into account.

Regarding further model validation, the experimental outcome
associated with the one-legged ergometer regimes presented in
Section 2.2 appears to furnish the fact that any quantitative
formulation neglecting a peripheral release mechanism of
isoprene will be an inappropriate physiological description of
the prevailing isoprene dynamics during exercise. However,
further biochemical and physiological studies will have to be
conducted in order to pinpoint the exact origin of this effect. Apart
from the line of argumentation presented above, alternative
isoprene sources might comprise:

(a) an exercise-induced, time-varying production in contracting
muscle (possibly due to rapid switches in cellular metabolism);

(b) a change of diffusion capacities in peripheral tissue (reflected,
for instance, by an abrupt increase of lb:per, cf. Eq. (6)).

However, note that while (a) is not consistent with our current
understanding of the isoprene synthetic pathway and does not
provide a natural explanation for the distinct peak heights
observed in repeated workload regimes, (b) appears questionable
due to the fact that such a transition is likely to influence both
isoprene and butane kinetics in a similar way. This contradicts
experimental evidence (see the discussion in Section 2.2 and King
et al., 2010a).

Remark 4. It should be mentioned that a more precise specifica-
tion of the peripheral tissue compartment on the basis of
estimated volumes and partition coefficients could not be
achieved. For instance, choosing lb:per ¼

1
82 (which is the proposed

blood:tissue partition coefficient for fat, Filser et al., 1996) and
setting ~V per ¼ 0:23 l as well as Cperð0Þ ¼ 6147 nmol=l in Table 2
yields a fit of similar quality as in Fig. 4. With these modifications
in mind, contrary to the previous interpretation as muscle tissue,
the peripheral compartment might hence also be viewed as
a small isoprene buffer volume characterized by a high lipid
content (such as for instance the endothelial layer lining the
vascular walls). This lack of joint estimability of lb:per and ~V per

within the present experimental setting is also reflected by a high
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degree of collinearity between the associated sensitivities
@y=@lb:per and @y=@ ~V per, respectively.

5. Conclusion

This paper is devoted to the development of a first mechanistic
description of isoprene evolution in different tissue compart-
ments of the human body by simulating the behavior of breath
isoprene output during several short-term exercise protocols. In
Section 2.2 various lines of supportive experimental evidence for
an extrahepatic tissue source of isoprene have been presented.
These findings have led us to a simple kinetic model that is
expected to aid further investigations regarding the exhalation,
storage, transport and biotransformation processes associated
with this important compound.

The emphasis of this work has been laid on deriving a sound
mathematical formulation flexible enough to cover a wide
spectrum of possible isoprene behavior in end-tidal breath, while
simultaneously maintaining consistency with earlier experimen-
tal findings as well as physiological plausibility of the involved
parameters. Depending on the specific field of application,
necessary model refinements might include the incorporation of
a multi-compartment lung for mapping ventilation–perfusion
mismatch or changes in diffusion capacity, as well as a less coarse
partition of the systemic tissue groups, similar as in Filser et al.
(1996) and Melnick and Kohn (2000). The statistical significance
of these generalizations might then be assessed, e.g., by employ-
ing residual-based comparison techniques for nested models as
described in Banks and Tran (2009), Banks and Fitzpatrick (1990).
However, at the current stage of research and given the limited
data on the dynamic behavior of breath isoprene throughout a
broader spectrum of experimental scenarios, it is preferable to
maintain a compartmentalization and parameterization as parsi-
monious as possible.

On-line determinations of dynamic VOC concentration profiles
in exhaled breath combined with adequate kinetic modeling is a
promising field of research, still in its infancy. From a methodo-
logical point of view, this work demonstrates that such dynamic
patterns reflect fundamental physiological changes and can
potentially be used for exploring the fate of volatile species in
the human body. Generally, it should also be emphasized that a
reliable quantification of relevant substance-specific character-
istics of endogenous trace gases (such as production and
metabolism) from breath data might yield novel diagnostic or
therapeutic indicators that are complementary to those gained by
employing more invasive methods. In this sense, we hope that the
present contribution will help to consolidate the potential role of
breath gas analysis in biomonitoring and will also stimulate
future efforts to establish mathematical modeling as a core
technique in VOC research.
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Appendix A. Classical inert gas elimination theory

Adopting the nomenclature in Table C1, the basic equation for
modeling pulmonary exchange of blood-borne inert gases using
one single lung compartment is a mass balance equation of the
form (see, e.g., Batzel et al., 2007)

VA
dCA

dt
¼ _V AðCI�CAÞþ

_Q cðCv�CaÞ, ðA:1Þ

where CX denotes the trace gas concentration in a region X

averaged over a period Dt, i.e.,

CXðtÞ ¼ 1=Dt

Z tþDt=2

t�Dt=2
Ĉ XðsÞds: ðA:2Þ

From Eq. (A.1), by assuming steady state conditions dCA=dt¼ 0
as well as CI ¼ 0 (i.e., no trace gas is inspired) and by substituting
Henry’s law Ca ¼ lb:airCA we derive the familiar equation due to
Farhi (1967),

Cmeas ¼ CA ¼
Cv

lb:airþ
_V A

_Q c

: ðA:3Þ

Here, the quotient _V A= _Q c is called ventilation–perfusion ratio,
whereas lb:air denotes the substance-specific and temperature-
dependent blood:gas partition coefficient.

Appendix B. Some fundamental model properties

Here we shall briefly recall some general properties of the
proposed model that necessarily must be satisfied in any valid
description of concentration dynamics. Firstly, note that Eqs. (3)–
(5) can be written as a time-varying, linear inhomogeneous
system

_c ¼ Aðu,pÞcþbðu,pÞ ¼: gðu,p,cÞ ðB:1Þ

in the state variable c : ¼ ðCA,Crpt,CperÞ
T , which is dependent on a

constant parameter vector p as well as on a vector u :¼ ð _V A, _Q c,CIÞ

lumping together all measurable external inputs.
Non-negativity of the trajectories associated with (B.1) for

non-negative initial conditions easily follows from the fact that
the system is cooperative. Moreover, by considering the dynamics
of the total amount of isoprene m :¼

P
i
~V iciZ0, viz.,

_m ¼ kper
pr þkrpt

pr �kper
metlb:perCper�krpt

metlb:rptCrptþ
_V AðCI�CAÞ, ðB:2Þ

it can readily be verified that the trajectories are bounded from
above if either _V A40 or if at least one of the two metabolic rates
krpt

met or kper
met is strictly positive. Furthermore, it can be proven that

under physiological steady state conditions, i.e., for constant u,
the time-invariant matrix A will be Hurwitz if

detðAÞ ¼ _V AW1þkrpt
metW2þkper

metW3þkrpt
metk

per
metW4a0, Wio0,

cf. (King et al., 2010b, Proposition 2). Hence, except for the
degenerate case _V A ¼ krpt

met ¼ kper
met ¼ 0 (which, as can be seen from

(B.2), necessarily results in divergent trajectories if one of the two
production rates is strictly positive) the compartmental concen-
trations can be guaranteed to approach a globally asymptotically
stable equilibrium ceðuÞ :¼ �A�1b once the inputs u affecting the
system are fixed.
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Appendix C. Nomenclature

See Table C1.

References

Amann, A., Poupart, G., Telser, S., Ledochowski, M., Schmid, A., Mechtcheriakov, S.,
2004. Applications of breath gas analysis in medicine. Int. J. Mass Spectrom.
239, 227–233.

Amann, A., Smith, D. (Eds.), 2005. Breath Analysis for Clinical Diagnosis and
Therapeutic Monitoring. World Scientific, Singapore.

Amann, A., Spanel, P., Smith, D., 2007. Breath analysis: the approach towards
clinical applications. Mini Rev. Med. Chem. 7, 115–129.

Amann, A., Telser, S., Hofer, L., Schmid, A., Hinterhuber, H., 2005. Breath gas as a
biochemical probe in sleeping individuals. In: Amann, A., Smith, D. (Eds.),
Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. World
Scientific, Singapore, pp. 305–316.

Anderson, J.C., Babb, A.L., Hlastala, M.P., 2003. Modeling soluble gas exchange in
the airways and alveoli. Ann. Biomed. Eng. 31, 1402–1422.

Anderson, J.C., Hlastala, M.P., 2007. Breath tests and airway gas exchange. Pulm.
Pharmacol. Ther. 20, 112–117.

Banks, H.T., Fitzpatrick, B.G., 1990. Statistical methods for model comparison in
parameter estimation problems for distributed systems. J. Math. Biol. 28,
501–527.

Banks, H.T., Holm, K., Robbins, D., in press. Standard error computations
for uncertainty quantification in inverse problems: asymptotic theory vs.
bootstrapping. Math. Comput. Modelling 52, 1610–1625.

Banks, H.T., Tran, H.T., 2009. Mathematical and Experimental Modeling of Physical
and Biological Processes. CRC Press, Boca Raton.

Batzel, J.J., Kappel, F., Schneditz, D., Tran, H.T., 2007. Cardiovascular and
Respiratory Systems: Modeling, Analysis, and Control. SIAM, Philadelphia.

Bock, H.G., 1981. Numerical treatment of inverse problems in chemical reaction
kinetics. In: Ebert, K., Deuflhard, P., Jäger, W. (Eds.), Modelling of Chemical
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Basic model parameters and reference values for normal subjects during rest.
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Concentrations
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End-capillary Ccu

Arterial Ca 5.7 (nmol/l)b

Mixed-venous Cv 9 (nmol/l)b

Richly perfused tissue (rpt) Crpt

Peripheral tissue Cper

Inhaled (ambient) CI 0 (nmol/l)

Compartment volumes

Alveoli VA 4.1 (l)c

End-capillary Vcu 0.15 (l)d

Richly perfused (rpt) Vrpt 13.25 (l)e

Blood rpt Vrpt,b 1.97 (l)e

Peripheral tissue Vper

Blood peripheral tissue Vper,b

Ambient ~V I

Fractional blood flows

Periphery (both legs) qper

Maximal qmax
per 0.7f

Nominal (rest) qrest
per 0.08g,0.14h

Constant Eq. (2) t
Partition coefficients

Blood:air lb:air 0.75i,j

Blood:rpt lb:rpt 0.4j

Blood:peripheral tissue lb:per 0.5 (muscle)j; 0.012 (fat)j

Rate constants

Hepatic metabolic rate krpt
met

Extrahepatic metabolic rate kper
met

Production rpt krpt
pr

Production peripheral tissue kper
pr

a Kushch et al. (2008).
b Mechanically ventilated patients in Miekisch et al. (2001).
c Mörk and Johanson (2006).
d Hughes and Morell (2001).
e Comprising viscera, brain and connective muscles according to Table 8.2 in

Ottesen et al. (2004).
f Corresponding to 450 kpm/min or approx. 75 W according to Fig. 6 in Sullivan

et al. (1989).
g Johnson (2007).
h Obtained by qrest

per ¼ 2ðsingle leg blood flow=cardiac outputÞ according to

Table 1 in Sullivan et al. (1989).
i Karl et al. (2001).
j Filser et al. (1996).
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Abstract Recommended standardized procedures for determining exhaled lower res-
piratory nitric oxide and nasal nitric oxide (NO) have been developed by task forces
of the European Respiratory Society and the American Thoracic Society. These rec-
ommendations have paved the way for the measurement of nitric oxide to become
a diagnostic tool for specific clinical applications. It would be desirable to develop
similar guidelines for the sampling of other trace gases in exhaled breath, especially
volatile organic compounds (VOCs) which may reflect ongoing metabolism.

The concentrations of water-soluble, blood-borne substances in exhaled breath
are influenced by:

– breathing patterns affecting gas exchange in the conducting airways
– the concentrations in the tracheo-bronchial lining fluid
– the alveolar and systemic concentrations of the compound.

The classical Farhi equation takes only the alveolar concentrations into account. Real-
time measurements of acetone in end-tidal breath under an ergometer challenge show
characteristics which cannot be explained within the Farhi setting. Here we develop
a compartment model that reliably captures these profiles and is capable of relating
breath to the systemic concentrations of acetone. By comparison with experimental
data it is inferred that the major part of variability in breath acetone concentrations
(e.g., in response to moderate exercise or altered breathing patterns) can be attributed
to airway gas exchange, with minimal changes of the underlying blood and tissue
concentrations. Moreover, the model illuminates the discrepancies between observed
and theoretically predicted blood-breath ratios of acetone during resting conditions,
i.e., in steady state. Particularly, the current formulation includes the classical Farhi
and the Scheid series inhomogeneity model as special limiting cases and thus is ex-
pected to have general relevance for other classes of volatile organic compounds as
well.

The chief intention of the present modeling study is to provide mechanistic rela-
tionships for further investigating the exhalation kinetics of acetone and other water-
soluble species. This quantitative approach is a first step towards new guidelines for
breath gas analyses of volatile organic compounds, similar to those for nitric oxide.

Keywords breath gas analysis · volatile organic compounds · acetone · modeling

Mathematics Subject Classification (2000) 92C45 · 92C35 · 93C10 · 93B07
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1 Introduction

Measurement of blood-borne volatile organic compounds (VOCs) occurring in hu-
man exhaled breath as a result of normal metabolic activity or pathological disorders
has emerged as a promising novel methodology for non-invasive medical diagno-
sis and therapeutic monitoring of disease, drug testing and tracking of physiological
processes [2,3,1,70,55]. Apart from the obvious improvement in patient compliance
and tolerability, major advantages of exhaled breath analysis compared to conven-
tional test procedures, e.g., based on blood or urine probes, include de facto unlim-
ited availability as well as rapid on-the-spot evaluation or even real-time analysis.
Additionally, it has been pointed out that the pulmonary circulation receives the en-
tire cardiac output and therefore the breath concentrations of such compounds might
provide a more faithful estimate of pooled systemic concentrations than single small-
volume blood samples, which will always be affected by local hemodynamics and
blood-tissue interactions [62].
Despite this huge potential, the use of exhaled breath analysis within a clinical setting
is still rather limited. This is mainly due to the fact that drawing reproducible breath
samples remains an intricate task that has not fully been standardized yet. Moreover,
inherent error sources introduced by the complex mechanisms driving pulmonary gas
exchange are still poorly understood. The lack of standardization among the different
sampling protocols proposed in the literature has led to the development of various
sophisticated sampling systems, which selectively extract end-tidal air by discarding
anatomical dead space volume [40,26,11]). Even though such setups present some
progress, they are far from being perfect. In particular, these sampling systems can
usually not account for the variability stemming from varying physiological states.

In common measurement practice it is often tacitly assumed that end-tidal air will
reflect the alveolar concentration CA, which in turn is proportional to the concentra-
tion of the VOC in mixed venous blood Cv̄, with the associated factor depending on
the substance-specific blood:gas partition coefficient λb:air (describing the diffusion
equilibrium between capillaries and alveoli), alveolar ventilation V̇A (governing the
transport of the compound through the respiratory tree) and cardiac output Q̇c (con-
trolling the rate at which the VOC is delivered to the lungs):

Cmeasured = CA =
Cv̄

λb:air +
V̇A
Q̇c

. (1)

This is the familiar equation introduced by Farhi [19], describing steady state inert
gas elimination from the lung viewed as a single alveolar compartment with a fixed
overall ventilation-perfusion ratio V̇A/Q̇c close to one. Since the pioneering work
of Farhi, both equalities in the above relation have been challenged. Firstly, for low
blood soluble inert gases, characterized by λb:air ≤ 10, alveolar concentrations result-
ing from an actually constant Cv̄ can easily be seen to vary drastically in response to
fluctuations in blood or respiratory flow (see also [41,39] for some recent findings in
this context). While this sensitivity has been exploited in MIGET (Multiple Inert Gas
Elimination Technique, cf. [87,86]) to assess ventilation-perfusion inhomogeneity
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throughout the normal and diseased lung, it is clearly problematic in standard breath
sampling routines based on free breathing, as slightly changing measurement condi-
tions (regarding, e.g., body posture, breathing patterns or stress) can have a large im-
pact on the observed breath concentration [17]. This constitutes a typical example of
an inherent error source as stated above, potentially leading to a high degree of intra-
and consequently inter-individual variability among the measurement results [61].
It is hence important to investigate the influence of medical parameters like cardiac
output, pulse, breathing rate and breathing volume on VOC concentrations in exhaled
breath. In contrast, while highly soluble VOCs (λb:air > 10) tend to be less affected
by changes in ventilation and perfusion, measurement artifacts associated with this
class of compounds result from the fact that – due to their often hydrophilic prop-
erties – a substantial interaction between the exhalate and the mucosa layers lining
the conducting airways can be anticipated [6]. In other words, for these substances
Cmeasured 6= CA, with the exact quantitative relationship being unknown. Examples
of endogenous compounds that are released into the gas phase not only through the
blood-alveolar interface, but also through the bronchial lining fluid are, e.g., acetone
and ethanol [7,83].

Acetone (2-propanone; CAS number 67–64–1; molar mass 58.08 g/mol) is one
of the most abundant VOCs found in human breath and has received wide attention
in the biomedical literature. Being a natural metabolic intermediate of lipolysis [35],
endogenous acetone has been considered as a biomarker for monitoring the ketotic
state of diabetic and fasting individuals [81,65,69,75], estimating glucose levels [20]
or assessing fat loss [47]. Nominal levels in breath and blood have been established
in [88,74], and bioaccumulation has been studied in the framework of exposure stud-
ies and pharmacokinetic modeling [91,45,57].

Despite this relatively large body of experimental evidence, the crucial link be-
tween acetone levels in breath and blood is still obscure, thus hindering the develop-
ment of validated breath tests for diagnostic purposes. For perspective, multiplying
the proposed population mean of approximately 1 µg/l [74] in end-tidal breath by the
partition coefficient λb:air = 340 [7] at body temperature appears to grossly underes-
timate observed (arterial) blood levels spreading around 1 mg/l [88,91,37]. Further-
more, breath profiles of acetone (and other highly soluble volatile compounds such as
2-pentanone or methyl acetate) associated with moderate workload ergometer chal-
lenges of normal healthy volunteers drastically depart from the trend suggested by
Equation (1) [40,41]. In particular, the physiological meaning of these discrepancies
has not been established in sufficient depth.

With the background material of the previous paragraphs in mind, we view ace-
tone as a paradigmatic example for the analysis of highly soluble, blood-borne VOCs,
even though it cannot cover the whole spectrum of different physico-chemical char-
acteristics. The emphasis of this paper is on developing a mechanistic description
of end-tidal acetone behavior during different physiological states (e.g., rest, exer-
cise, sleep and exposure scenarios). Such a quantitative approach will contribute to
a better understanding regarding the relevance of observable breath concentrations
of highly soluble trace gases with respect to the underlying endogenous situation and
hence constitutes an indispensable prerequisite for guiding the interpretation of future
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breath test results. Moreover, it will allow for a standardized examination of the in-
formation content and predictive power of various breath sampling regimes proposed
in the literature. Specifically, our work also aims at complementing previous studies
centered on single breath dynamics during resting conditions [83,32,5,7,45].

By adopting the usual compartmental approach [44,15,57,68] our formulation is
simple in the sense that no detailed anatomical features of the respiratory tract must
be taken into account. Although models of this type have been criticized for their un-
derlying assumptions [22] (e.g., regarding the cyclic nature of breathing), they prove
as valuable tools for capturing both short-term behavior as indicated above and phe-
nomena that are characteristic for sampling scenarios extending over minutes or even
hours. Consequently, while the physical derivation to be presented here is clearly
driven by the well-established theory covering soluble gas exchange in a single exha-
lation framework, it extends these ideas to a macroscopic level, thus yielding a model
that can serve as a template for studying the mid- to long-term kinetics of acetone and
similar volatile organic compounds in breath and various parts of the human body

2 Experimental basics

Here we shall briefly discuss the experimental background pertinent to our own phe-
nomenological findings presented throughout the paper. In particular, these results
were obtained with the necessary approvals by the Ethics Committee of the Inns-
bruck Medical University. All volunteers gave written informed consent.

Breath acetone concentrations are assessed by means of a real-time setup de-
signed for synchronized measurements of exhaled breath VOCs as well as a variety
of respiratory and hemodynamic parameters, see Fig. 1. Extensive details are given
in [40].

The breath-related part of the mentioned setup consists of a head mask spirometer
system allowing for the standardized extraction of predefined exhalation segments
which – via a heated and gas tight Teflon transfer line – are then directly drawn into
a Proton-Transfer-Reaction mass spectrometer (PTR-MS, Ionicon Analytik GmbH,
Innsbruck, Austria) for online analysis. This analytical technique has proven to be
a sensitive method for quantification of volatile molecular species M down to the
ppb (parts per billion) range on the basis of “soft” chemical ionization within a drift
chamber, i.e., by taking advantage of the proton transfer

H3O+ +M→MH+ +H2O

from primary hydronium precursor ions originating in an adjoint hollow cathode [50,
51]. Note that this reaction scheme is selective to VOCs with proton affinities higher
than water (166.5 kcal/mol), thereby precluding the ionization of the bulk composi-
tion exhaled air, N2, O2 and CO2. Count rates of the resulting product ions MH+ or
fragments thereof appearing at specified mass-to-charge ratios m/z can subsequently
be converted to absolute concentrations of the protonated compounds (see [73] for
further details on the quantification of acetone as well as [40] for the underlying
PTR-MS settings used). The carbon dioxide concentration CCO2 of the gas sample
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is determined by a separate sensor (AirSense Model 400, Digital Control Systems,
Portland, USA).
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Fig. 1 Experimental setup used for obtaining VOC profiles and medical parameters [40]. Items in italic
correspond to measurable variables. The selective analysis of predefined breath segments is ensured by
flow-triggered sample extraction.

In addition to the breath concentration profiles of acetone, it will be of impor-
tance for us to have at hand a continuous estimate of the corresponding sample wa-
ter vapor content Cwater. As has been put forward in the literature, the water dimer
(H3O+)H2O forming in the drift chamber as a result of clustering can be used for
this purpose [89,4]. More specifically, the pseudo concentration signal at m/z = 37
calculated according to Equation (1) in [73] using a standard reaction rate constant of
2.0× 10−9 cm3/s yields a quantity roughly proportional to sample humidity. Slight
variations due to fluctuations of the (unknown) amount of water clusters forming in
the ion source are assumed to be negligible. Absolute quantification can be achieved
by comparison with standards containing predefined humidity levels. Such standards
with CCO2 and Cwater varying over the experimental physiological range of 2 – 8%
and 2 – 6%, respectively, were prepared using a commercial gas mixing unit (Gaslab,
Breitfuss Messtechnik GmbH, Harpstedt, Germany), resulting in a mean calibration
factor of 2.1×10−4 and R2 ≥ 0.98 for all regressions. It has been argued in [36] that
the aforementioned pseudo concentration can drastically be affected by the carbon
dioxide concentration, which, however, could not be confirmed with our PTR-MS
settings. Although the computed water content is slightly overestimated with increas-
ing CCO2 , the sensitivity was found to stay within 10% of the mean value given above.
Nevertheless, we recognize that this approximate method for determining water vapor
levels can only serve as a first surrogate for more exact hygrometer measurements.
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Despite the fact that molecular oxygen is not protonated, the breath oxygen con-
centration CO2 – relative to an assumed steady state value of about 100 mmHg in
end-tidal (alveolar) air during rest [52] – within one single experiment can still be
assessed by monitoring the parasitic precursor ion O+

2 at m/z = 32, resulting from
a small amount of sample gas entering the ion source with subsequent ionization
of O2 under electron impact [62]. For normalization purposes, the respective count
rates are again converted to pseudo concentrations. Table 1 summarizes the measured
quantities relevant for this paper. In general, breath concentrations will always refer
to end-tidal levels, except where explicitly noted. Moreover, a typical sampling inter-
val of 5 s is assumed for each variable (corresponding to breath-by-breath extraction
of end-tidal VOC levels at a normal breathing rate of 12 tides/min).

Table 1 Summary of measured parameters together with some nominal literature values during rest and
assuming ambient conditions. Breath concentrations refer to end-tidal levels.

Variable Symbol Nominal value (units)

Cardiac output Q̇c 6 (l/min) [56]
Alveolar ventilation V̇A 5.2 (l/min) [90]
Tidal volume VT 0.5 (l) [90]
Acetone concentration Cmeasured 1 (µg/l) [74]
CO2 content CCO2 5.6 (%) [52]
Water content Cwater 4.7 (%) [24]
O2 content CO2 13.7 (%) [52]

3 Acetone modeling

3.1 Preliminaries and assumptions

Classical pulmonary inert gas elimination theory [19] postulates that uptake and re-
moval of VOCs take place exclusively in the alveolar region. While this is a reason-
able assumption for low soluble substances, it has been shown by several authors that
exhalation kinetics of VOCs with high affinity for blood and water such as acetone
are heavily influenced by relatively quick absorption and release mechanisms occur-
ring in the conductive airways (see, e.g., [5] for a good overview of this topic). More
specifically, due to their pronounced hydrophilic characteristics such compounds tend
to interact with the water-like mucus membrane lining this part of the respiratory tree,
thereby leading to pre- and post-alveolar gas exchange often referred to as wash-
in/wash-out behavior. The present model aims at taking into consideration two major
aspects in this framework.

3.1.1 Bronchial exchange

It is now an accepted fact that the bronchial tree plays an important role in overall
pulmonary gas exchange of highly (water) soluble trace gases, affecting both endoge-
nous clearance as well as exogenous uptake. For perspective, Anderson et al. [7] in-
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ferred that while fresh air is being inhaled, it becomes enriched with acetone stored in
the airway surface walls of the peripheral bronchial tract, thus leading to a decrease
of the acetone pressure/tension gradient between gas phase and capillary blood in
the alveolar space. This causes an effective reduction of the driving force for gas
exchange in the alveoli and minimizes the unloading of the capillary acetone level.
Correspondingly, during exhalation the aforementioned diffusion process is reversed,
with a certain amount of acetone being stripped from the air stream and redepositing
onto the previously depleted mucus layer. As a phenomenological consequence, ex-
haled breath concentrations of acetone and other highly water soluble substances tend
to be diminished on their way up from the deeper respiratory tract to the airway open-
ing, thereby decreasing overall elimination as compared to purely alveolar extraction.
Similarly, exposition studies suggest a pre-alveolar absorption of exogenous acetone
during inhalation and a post-alveolar revaporization during expiration, resulting in a
lower systemic uptake compared to what would be expected if the exchange occurred
completely in the alveoli [91,45,82].

From the above, quantitative assessments examining the relationships between
the measured breath concentrations and the underlying alveolar levels are complex
and need to take into account a variety of factors, such as airway temperature profiles
and airway perfusion as well as breathing patterns [5,6].

In accordance with previous modeling approaches, we consider a bronchial com-
partment separated into a gas phase and a mucus membrane, which is assumed to
inherit the physical properties of water [45,57] and acts as a reservoir for acetone.
Part of the acetone dissolved in this layer is transferred to the bronchial circulation,
whereby the major fraction of the associated venous drainage is postulated to join the
pulmonary veins via the postcapillary anastomoses [52]. A study by Morris et al. [59]
on airway perfusion during moderate exercise in humans indicates that the fraction
qbro ∈ [0,1) of cardiac output Q̇c contributing to this part of bronchial perfusion will
slightly decrease with increasing pulmonary blood flow. According to Figure 3 from
their paper and assuming that Q̇rest

c = 6 l/min we can derive the heuristic linear model

qbro(Q̇c) := max{0,qrest
bro (1−0.06(Q̇c− Q̇rest

c ))}. (2)

The constant qrest
bro will be estimated in Section 4. As a rough upper bound we propose

the initial guess qrest
bro = 0.01 [52]. We stress the fact that the bronchial compartment

just introduced has to be interpreted as an abstract control volume lumping together
the decisive sites of airway gas exchange in one roughly homogeneous functional
unit. These locations can be expected to vary widely with the solubility of the VOC
under scrutiny as well as with physiological boundary conditions [5].

3.1.2 Temperature dependence

There is strong experimental evidence that airway temperature constitutes a major
determinant for the pulmonary exchange of highly soluble VOCs, cf. [33]. In particu-
lar, changes in airway temperature can be expected to affect the solubility of acetone
and similar compounds in the mucus surface of the respiratory tree. It will hence be
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important to specify a tentative relationship capturing such influences on the observ-
able breath levels. As will be rationalized below, this may be achieved by taking into
account the absolute humidity of the extracted breath samples.

Passing through the conditioning regions of the upper airways, inhaled air is
warmed to a mean body core temperature of approximately 37 ◦C and fully saturated
with water vapor, thus leading to an absolute humidity of bronchial and alveolar air of
about 6.2% at ambient pressure. During exhalation, depending on the axial temper-
ature gradient between the lower respiratory tract and the airway opening, a certain
amount of water vapor will condense out and reduce the water content Cwater in the
exhalate according to the saturation water vapor pressure Pwater (in mbar) determined
by local airway temperature T (in ◦C) [54,25]. The relationship between these two
quantities can be approximated by the well-known Magnus formula [77]

Pwater(T ) = 6.112 exp
(

17.62T
243.12+T

)
, (3)

valid for a temperature range −45 ◦C ≤ T ≤ 60 ◦C. For normal physiological val-
ues of T , the resulting pressure is sufficiently small to treat water vapor as an ideal
gas [67] and hence by applying Dalton’s law we conclude that absolute humidity
Cwater (in %) of the exhalate varies according to

Cwater(T ) = 100
Pwater(T )
Pambient

, (4)

where Pambient is the ambient pressure in mbar. Inverting the above formula, the mini-
mum airway temperature Tmin = Tmin(Cwater) during exhalation becomes a function
of measured water content in exhaled breath. From this, a mean airway and mucus
temperature characterizing the homogeneous bronchial compartment of the previous
section will be defined as

T̄ (Cwater) :=
Tmin(Cwater)+37

2
, (5)

corresponding to a hypothesized linear increase of temperature along the airways.
Note that this assumption is somehow arbitrary in the sense that the characteristic
temperature of the airways should be matched to the primary (time- and solubility-
dependent) location of airway gas exchange as mentioned above. Equation (5) thus
should only be seen as a simple ad hoc compromise incorporating this variability.

The decrease of acetone solubility in the mucosa – expressed as the water:air
partition coefficient λmuc:air – with increasing temperature can be described in the
ambient temperature range by a van’t Hoff-type equation [78]

log10 λmuc:air(T ) =−A+
B

T +273.15
, (6)

where A = 3.742 and B = 1965 Kelvin are proportional to the entropy and enthalpy
of volatilization, respectively. Hence, in a hypothetical situation where the absolute
sample humidity at the mouth is 4.7% (corresponding to a temperature of T ≈ 32 ◦C
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and ambient pressure at sea level, cf. [54,24]), local solubility of acetone in the mu-
cus layer increases from λmuc:air(37 ◦C) = 392 in the lower respiratory tract (cf. [44])
to λmuc:air(32 ◦C) = 498 at the mouth, thereby predicting a drastic reduction of air
stream acetone concentrations along the airways. The above formulations allow to
assess this reduction by taking into account sample water vapor as a meta param-
eter. This meta parameter reflects various influential factors on the mucus solubil-
ity λmuc:air which would otherwise be intricate to handle due to a lack of informa-
tion, such as local airway perfusion, breathing patterns, mucosal hydration and ther-
moregulatory events which in turn will affect axial temperature profiles. In particular,
λmuc:air for the entire bronchial compartment will be estimated via the mean airway
temperature T̄ as

λmuc:air(T̄ ) = λmuc:air(T̄ (Cwater)). (7)

The strong coupling between sample humidity and exhaled breath concentrations
predicted by the two relationships (3) and (6) is expected to be a common factor
for all highly water soluble VOCs. In the framework of breath alcohol measurements
Lindberg et al. [49] indeed showed a positive correlation between these two quantities
along the course of exhalation, which can also be observed in the case of acetone,
cf. Fig. 2.

Variations of the acetone blood:air partition coefficient λb:air = 340 [7,18] – dom-
inating alveolar gas exchange – in response to changes in mixed venous blood tem-
perature, e.g., due to exercise, are ignored as such changes are necessarily small [14].
Hence, λb:air will always refer to 37 ◦C. Similarly, the partition coefficient between
mucosa and blood is treated as constant defined by

λmuc:b := λmuc:air(37 ◦C)/λb:air, (8)

resulting in a value of 1.15. Note, that if the airway temperature is below 37 ◦C we
always have that

λmuc:air/λmuc:b ≥ λb:air, (9)

as λmuc:air is monotonically decreasing with increasing temperature, see Equation (6).

3.1.3 Bronchio-alveolar interactions

In a series of modeling studies [83,5], the location of gas exchange (from gas phase
to liquid phase and vice versa) has been demonstrated to shift between bronchial and
alveolar regions depending on the solubility of the compound under investigation.
During tidal breathing, exchange for substances with blood:air partition coefficient
λb:air ≤ 10 takes place almost exclusively in the alveoli, while it appears to be strictly
limited to the bronchial tract in the case of λb:air ≥ 100. Transport for VOCs lying
within these two extremes distributes between both spaces. Likewise, for fixed λb:air,
location of gas exchange is expected to vary with breathing patterns. As has been
concluded by Anderson et al. [7], airway contribution to overall pulmonary exchange
of endogenous acetone is about 96% during tidal breathing, but only 73% when inhal-
ing to total lung capacity. The rationale for this reduction is that while more proximal
parts of the mucosa lining are being depleted earlier in the course of inhalation by los-
ing acetone to the inhalate, saturation of the air stream with acetone is continuously
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Fig. 2 Correlation between breath acetone concentrations and breath water content during two consecutive
exhalations of a normal healthy volunteer at an approximately constant rate of 150 ml/s. Water-acetone
pairs in the third panel correspond to the two linear Phase 3 segments as described in [7]. The high
sampling frequency in this example is achieved by collecting breath over the entire breath cycle (as opposed
to the selective end-tidal extraction regime described in Section 2) as well as by limiting PTR-MS detection
to only three mass-to-charge ratios (with corresponding dwell times given in brackets): m/z = 21 (5 ms),
m/z = 37 (2 ms) and m/z = 59 (10 ms).

shifted towards the alveolar region. Furthermore, it can be argued that the magnitude
of this shift increases with volumetric flow during inhalation as equilibration of fresh
air with the mucus layer in regions with high flow rates might not be completed. From
a reversed viewpoint this would be consistent with the observation made in [7] that
end-exhaled acetone partial pressures increase with exhaled flow rate.

Such smooth transitions in the location of gas exchange can be incorporated
into the model by including a diffusion process describing the interaction between
bronchial and alveolar compartment (cf. Fig. 3), which is similar to the strategy found
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in the theory of stratified or series inhomogeneities developed by Scheid et al. [71].
According to the approach presented there, series inhomogeneities stem from the fact
that while gas flow in the upper parts of the respiratory tree is primarily dominated by
convection, axial diffusion becomes the decisive factor in the terminal airspaces. This
can also be thought of as an incomplete mixing of tidal volume with the functional
residual capacity, thus leading to the formation of an effective gas diffusion barrier
between the proximal and distal parts of the alveolar space. Scheid et al. quantify this
effect by means of a (substance-specific) stratified conductance parameter D, taking
values in the interval [0,∞). As D approaches zero, the retention (defined as the ratio
between steady state partial pressures in arterial and mixed venous blood) of inert
gases eliminated from the blood increases, while excretion (the ratio between par-
tial pressures in mixed expired air and mixed venous blood) decreases. Hence, small
values of D correspond to a reduced overall gas exchange efficiency of the lungs.
It will be shown that reinterpreting the concept of stratified inhomogeneity and the
stratified conductance parameter D in the framework of soluble gas exchange allows
for a proper description of the bronchio-alveolar interactions discussed above. The
particular role of D within the present framework will be clarified in Section 3.2.2.

The alveolar region itself is represented by one single homogeneous alveolar unit,
thereby neglecting ventilation-perfusion inequality throughout the lung. In the case of
VOCs with high λb:air this constitutes an acceptable simplification, since the classical
Farhi equation predicts a minimal influence of local ventilation-perfusion ratios on
the corresponding alveolar concentrations. Uptake and elimination of VOCs to and
from the bronchio-alveolar tract during inhalation and exhalation is governed by the
alveolar ventilation V̇A (defined as the gas volume per time unit filling the alveoli and
the exchanging bronchial tubes).

3.1.4 Body compartments

The systemic part of the model has been adapted from previous models [44,57] and
consists of two functional units: a liver compartment, where acetone is endogenously
produced and metabolized, as well as a tissue compartment representing an effec-
tive storage volume. The latter basically lumps together tissue groups with similar
blood:tissue partition coefficient λb:tis ≈ 1.38, such as richly perfused tissue, mus-
cles and skin [7,57]. Due to the low fractional perfusion of adipose tissue and its
low affinity for acetone, an extra fat compartment was not considered. The fractional
blood flow qliv ∈ (0,1) to the liver is assumed to be related to total cardiac output by

qliv(Q̇c) := 0.034+1.145exp(−1.387Q̇c/Q̇rest
c ), (10)

obtained by exponential fitting of the data given in [57]. The rate Ṁ of acetone
metabolism is assumed to obey the Michaelis-Menten (saturation) kinetics

Ṁ =
vmaxClivλb:liv

km +Clivλb:liv
, (11)

with vmax, km > 0, or the linear kinetics

Ṁ = klinbw0.75Clivλb:liv =: kmetClivλb:liv, (12)
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where “bw” denotes the body weight in kg. The rate constant klin can be obtained by
linearization of (11), i.e.,

klin := vmax/km ≈ 0.0037 l/kg0.75/min, (13)

according to the values given in [44].

Remark 1 Taking into account nominal mixed venous blood concentrations of ap-
proximately 1 mg/l for healthy volunteers as well as an apparent Michaelis-Menten
constant km = 84 mg/l [44], linear kinetics will be sufficient for describing most
situations encountered in practice. Typical exceptions include, e.g., severe diabetic
ketoacidosis or starvation ketosis, where plasma concentrations up to 500 mg/l have
been reported [65,69] and hence metabolism can be expected to reach saturation.

Other ways of acetone clearance such as excretion via the renal system are neglected [91].
Endogenous synthesis of acetone in the liver is assumed to occur at some rate kpr > 0
depending on current lipolysis [35]. In particular, fat catabolism is considered a long-
term mechanism compared to the other dynamics of the system, so that kpr can in
fact be assumed constant during the course of experiments presented here (less than
2 hours).

3.2 Model equations and a priori analysis

3.2.1 Derivation

In order to capture the gas exchange and tissue distribution mechanisms presented
above, the model consists of four different compartments. A sketch of the model
structure is given in Fig. 3 and will be detailed in following.

Model equations are derived by taking into account standard conservation of mass
laws for the individual compartments, see [38, Sect. 2.3]. Local diffusion equilibria
are assumed to hold at the air-tissue, tissue-blood and air-blood interfaces, the ratio
of the corresponding concentrations being described by the appropriate partition co-
efficients, e.g., λb:air. Unlike for low blood soluble compounds, the amount of highly
soluble gas dissolved in local blood volume of perfused compartments cannot gen-
erally be neglected, as it might significantly increase the corresponding capacities.
This is particularly true for the airspace compartments. Since reliable data for some
local blood volumes could not be found, in order not to overload the model with
too many hypothetical parameters, we will use the effective compartment volumes
Ṽbro := Vbro +Vmucλmuc:air, ṼA := VA +Vc′λb:air, Ṽliv := Vliv +Vliv,bλb:liv as well as
Ṽtis := Vtis and neglect blood volumes for the mucosal and tissue compartment.
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Fig. 3 Sketch of the model structure. The body is divided into four distinct functional units:
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(metabolism and production) and tissue (storage). Dashed boundaries indicate a diffusion equilibrium. The
conductance parameter D has units of volume divided by time and quantifies an effective diffusion barrier
between the bronchial and the alveolar tract, cf. Section 3.2.2.

According to Fig. 3 as well as by taking into account the discussion of the previ-
ous subsections, for the bronchial compartment we find that

dCbro

dt
Ṽbro = V̇A(CI−Cbro)+D(CA−Cbro)+qbroQ̇c

(
Ca− λmuc:air

λmuc:b
Cbro

)
, (14)

with CI denoting the inhaled (ambient) gas concentration, while the mass balance
equations for the alveolar, liver and tissue compartment read

dCA

dt
ṼA = D(Cbro−CA)+(1−qbro)Q̇c

(
Cv̄−λb:airCA

)
, (15)

and
dCliv

dt
Ṽliv = kpr− kmetλb:livCliv +qliv(1−qbro)Q̇c

(
Ca−λb:livCliv

)
, (16)

and
dCtis

dt
Ṽtis = (1−qliv)(1−qbro)Q̇c

(
Ca−λb:tisCtis

)
, (17)
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respectively. Here,

Cv̄ := qlivλb:livCliv +(1−qliv)λb:tisCtis (18)

and
Ca := (1−qbro)λb:airCA +qbroλmuc:airCbro/λmuc:b (19)

are the associated concentrations in mixed venous and arterial blood, respectively.
Moreover, we state that measured (end-tidal) breath concentrations equal bronchial
levels, i.e.,

Cmeasured = Cbro. (20)

The decoupled case D = qbro = 0 will be excluded further on in this paper as it lacks
physiological relevance.

Some fundamental model properties are discussed in Appendix A. In particular,
the components of the state variable c := (Cbro,CA,Cliv,Ctis)T remain non-negative,
bounded and will approach a globally asymptotically stable equilibrium ce(u) once
the measurable external inputs u := (V̇A, Q̇c,VT,λmuc:air(Cwater),CI) affecting the sys-
tem are fixed. This corresponds, e.g., to the situation encountered during rest or con-
stant workload.

3.2.2 Steady state relationships and interpretation of the stratified conductance
parameter D

Assume that the system is in steady state and we know the associated end-tidal breath
concentration Cmeasured = Cbro. Furthermore, we define the bronchial and alveolar
ventilation-perfusion ratio to be

rbro :=
V̇A

qbroQ̇c
and rA :=

V̇A

(1−qbro)Q̇c
,

respectively. If D = 0 we deduce that

Cmeasured = Cbro =
rbroCI +(1−qbro)λb:airCA

(1−qbro)
λmuc:air
λmuc:b

+ rbro
=

rbroCI +(1−qbro)Cv̄

(1−qbro)
λmuc:air
λmuc:b

+ rbro
=

rbroCI +Ca
λmuc:air
λmuc:b

+ rbro
, (21)

corresponding to purely bronchial gas exchange. On the other hand, for D→∞ it can
be shown by simple algebra that

Cmeasured = Cbro =

CA =
rACI +Cv̄

qbro
λmuc:air
λmuc:b

+(1−qbro)λb:air + rA
=

Ca

qbro
λmuc:air
λmuc:b

+(1−qbro)λb:air
. (22)

In the following, let CI = 0. Note that then in both cases the physiological boundary
condition Cv̄ ≥Ca is respected. Substituting qbro = 0 into (22) yields the well-known
Farhi equations describing purely alveolar gas exchange.
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Consequently, D defines the location of gas exchange in accordance with Section 3.1.3,
while qbro determines to what extent the bronchial compartment acts as an inert tube.
In this sense, Equations (14)–(17) define a generalized description of gas exchange
including several known models as special cases. This hierarchy is summarized in
Fig. 4.

model

�
��	

@
@@R

qbro = 0 qbro > 0

stratified
inhomogeneity

location dependent
gas exchange

? ? ?
D→ ∞ D→ 0 D→ ∞

Farhi inert gas
elimination bronchial alveolar

Fig. 4 Equations (14)–(17) viewed as generalized model including several gas exchange mechanisms as
special cases (CI = 0).

For perspective – as has been rationalized in the case of acetone in Section 3.1.3
and is likely to be a common characteristic for all highly water soluble VOCs – the
stratified conductance parameter D will be close to zero during rest and is expected
to increase with tidal volume and/or flow rate [84,5]. We propose to model this de-
pendency as

D := Drest + kdiff,1 max{0,VT−V rest
T }+ kdiff,2 max{0,V̇A−V̇ rest

A }, kdiff, j ≥ 0, (23)

which will further be justified in Section 4.3.
From a practical point of view, we stress the fact that if D is close to zero, calcu-

lating blood levels from Cmeasured by using Equation (21) or taking advantage of this
expression for normalization and/or correction purposes is critical due to the possibly
large influence of the term rbro as well as due to the high degree of uncertainty with
respect to qbro and λmuc:air. Particularly, from the aforementioned facts this means
that measured breath concentrations of acetone (and generally highly water soluble
substances) determined during resting conditions and free breathing can be rather
misleading indicators for endogenous levels, even if sampling occurs under well de-
fined standard conditions (for instance – as is common practice – using CO2- and/or
flow-controlled extraction from the end-tidal exhalation segment [40,11]). This has
first been recognized in the context of breath alcohol measurements revealing experi-
mentally obtained blood-breath concentration ratios of ethanol during tidal breathing
that are unexpectedly high compared with in vitro partition coefficients [34]. An el-
egant approach proposed to circumvent this problem is isothermal rebreathing [34,
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63], which aims at creating conditions where (cf. Equation (21))

Cmeasured = CI = CA = Cbro =
rbroCbro +(1−qbro)Cv̄

(1−qbro)λb:air + rbro
=

Cv̄

λb:air
=

Ca

λb:air
(24)

from which the mixed venous blood concentration can easily be determined by multi-
plying the measured rebreathing concentration with the anticipated blood:air partition
coefficient at body temperature. A quantitative evaluation of this experimental tech-
nique by means of the above model can be found in the technical report [42].

4 Model validation and estimation

4.1 A priori identifiability

One of the purposes of our tentative model is to provide a basis for estimating (un-
known) compartment concentrations c as well as certain acetone-specific parameters
p j ∈ {kpr,kmet,vmax,km,D,qrest

bro} from the knowledge of measured breath and blood
concentrations y. Often over-looked, a necessary requirement in this framework is
the a priori (or structural) identifiability/observability of the model, which basically
checks whether in an ideal context of an error-free model and continuous, noise-free
measurements there exist functions u (or, in other words, conductible experiments)
such that the associated output y (the accessible data) carries enough information to
enable an unambiguous determination of all unknown states and parameters. Partic-
ularly, this avoids an inherent over-parameterization of the model. As the time evolu-
tion of the system (14)–(17) for a given u is fixed once the initial conditions c0 at the
start of the experiment are known, the analysis of a priori identifiability/observability
hence amounts to studying (local) injectivity of y with respect to c0 and the param-
eters p j under scrutiny. Evidently, if such a property does not hold then any attempt
to reliably estimate these quantities from y is doomed to failure from the start, as
two entirely different parameter combinations can yield exactly the same data. In
the present context, generic a priori identifiability/observability for c0 and any se-
lection of parameters p j as above was confirmed by interpreting the latter as addi-
tional states with time derivative zero and subjecting the augmented system to the
Hermann-Krener rank criterion [27] (see also [38, Sect. 3.1]). In particular, the suffi-
cient condition in [38, Lemma 1] was fulfilled for both y = Cbro and y = Ca as given
in Equations (20) and (19), respectively.

4.2 Simulation of exposure data and model calibration

Generally speaking, in vivo data on acetone dynamics in the human organism are
very limited. Indeed, experimental efforts to date have centered on quantifying bioac-
cumulation/biotransformation as well as body burden within occupational exposure
settings. The study by Wigaeus et al. [91] represents the most extensive research
in this context (including breath as well as simultaneous blood measurements), thus
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rendering it as a convenient benchmark for confirming the appropriateness of models
involving descriptions of systemic acetone distribution, cf. [44,57].

In the following we will calibrate the unknown kinetic rate constants, the frac-
tional bronchial blood flow, as well as the equilibrium tissue levels c0 at rest, by
subjecting the proposed model to the Series 1 exposure scenario published in [91].
Briefly, this data set comprises acetone concentration profiles in exhaled breath, arte-
rial and (presumably peripheral) venous blood of eight normal male volunteers, who
were exposed to an atmosphere containing 1.3 mg/l of acetone over a period of two
hours. Particularly, all measurements correspond to resting conditions.

Since the major goal here is to extract approximate nominal values for the above-
mentioned physiological parameters rather than individual estimates, the model will
be fitted to the pooled data of all eight test subjects. For this purpose, we assume
that the exposure starts after ten minutes of quiet tidal breathing, i.e., the inhaled
concentration is given by the scaled indicator function CI(t) = 1.3 χ[10,130](t) and set
alveolar ventilation and cardiac output to constant resting values V̇ rest

A = 6 l/min and
Q̇rest

c = 5.8 l/min, respectively [57,44]. Tissue volumes and partition coefficients are
as in Table 3 for a male of height 180 cm and weight 70 kg. Since the nominal ace-
tone concentration in hepatic venous blood is a priori unknown, acetone metabolism
is assumed to follow a Michaelis-Menten kinetics with a fixed apparent Michaelis
constant km = 84 mg/l (cf. Equation (11)). Our aim is to determine the parameter
vector p = (vmax,kpr,Drest,qrest

bro ) as well as the nominal endogenous steady state lev-
els c0 by solving the ordinary least squares problem

argmin
c0,p

N

∑
i=0

(
Ca,i−Ca(ti)

)2
, s.t.


g(u0,c0,p) = 0 (steady state)
c0,p≥ 0 (positivity)
qrest

bro ≤ 0.05 (normalization)
Ca(0) = 1 mg/l (endog. arterial level)

(25)

Here, g is the right-hand side of the ODE system (14)–(17), Ca,i is the measured arte-
rial blood concentration at time instant ti, whereas the predicted arterial concentration
Ca is defined as in Equation (19). The endogenous level Ca(0) = 1 mg/l was chosen
in accordance with the population mean values given in [35,91].

The above minimization problem was solved by implementing a multiple shoot-
ing routine [13] in Matlab. This iterative method can be seen as a generalization of
the standard Gauss-Newton algorithm for solving constrained ordinary least squares
problems, treating (25) in the framework of multipoint boundary value problems (see
also [79] for an early illustration). Further details regarding the general scope of
multiple shooting as well as its superior stability compared with classical solution
schemes can be found in [12,13,66,85]. For a variety of applications and modifi-
cations proposed for covering PDEs and delay differential equations the interested
reader is referred to [60,28].

Derivatives of Ca with respect to (c0,p) were computed by simultaneously solv-
ing the associated variational equations [23]. The minimization procedure was re-
peated several times with randomly assigned starting values in the interval (0,1).
Convergence was assumed to be achieved when the maximum componentwise rel-
ative change between two successive parameter refinements was less than 0.1%, re-
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sulting in the same estimates for all trials considered, cf. Table 2. Figure 5 shows that
the calibrated model can faithfully reproduce the basic features of the observed data.

Remark 2 The practical identifiability of the estimates in Table 2 was examined by
calculating the rank of the extended Jacobian J :=

(
ST ZT ), where S is the sensitivity

function matrix having rows

Si,− :=
(

∂Ca(ti−1)
∂p

∂Ca(ti−1)
∂c0

)
, (26)

and Z denotes the Jacobian associated with the equality constraints in (25). More
specifically, we adopted the standard numerical rank criterion

rank J = max{k; σk > ε‖J‖∞}, (27)

where σ1 ≥ σ2 ≥ . . .≥ 0 are the singular values of J and ε = 10−8 reflects the maxi-
mum relative error of the calculated sensitivities [21]. Accordingly, we find that J has
full rank, suggesting that all estimated quantities are practically identifiable [16,30].
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Fig. 5 Model fitted to the Series 1 exposure data published by Wigaeus et al. [91]. Data correspond to
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150 CHAPTER 8. PAPER D



20

Table 2 Fitted parameter values according to Fig. 5.

vmax kpr Drest qrest
bro (Cbro,CA,Cliv,Ctis)

(mg/min/kg0.75) (mg/min) (l/min) (%) (mg/l)

Anticipated 0.31 ≤ 2 0 1 (0.0011,∗,∗,∗)
Optimized 0.62 0.19 0 0.43 (0.0016,0.0029,0.58,0.72)

Anticipated (literature) values of c0 and p compare favorably to those obtained by
the aforementioned minimization, thus consolidating the physiological plausibility of
the extracted estimates. In particular, the fitted value of the gas exchange location pa-
rameter Drest = 0 agrees well with what is expected from the theoretical discussion
in Section 3.2.2. The rate at which endogenous acetone forms in healthy adults as
a result of normal fat catabolism is not known. However, from the study on acetone
metabolism in lean and obese humans during starvation ketosis published by Re-
ichard et al. [69] a rather conservative upper bound for kpr can be derived to lie in
the range of 2 mg/min. A diminished fractional bronchial perfusion qrest

bro might re-
flect the fact that the assumption of diffusion equilibrium between the mucosa lining
and the deeper vascularized sections of the airway wall is rather stringent, so that
actually less acetone is transported away from the peripheral bronchial tract via the
bloodstream. On the other hand qrest

bro = 0.01 refers to the entire bronchial circula-
tion rather than only the part contributing to anatomic right-to-left shunt as discussed
in Section 3.1.1. The fitted steady state value for the measured breath concentration
Cmeasured(0) = Cbro(0) = 0.0016 mg/l during normal breathing at rest is only slightly
higher than the observed levels spreading around 500 ppb (corresponding to about
0.0011 mg/l) [74,40].

Remark 3 Fig. 5 clearly illustrates the necessity of taking into account the conducting
airways as an additional compartment for exchange of highly soluble substances. In
particular, the observed data profiles are in sharp contrast to the classical Farhi inert
tube description predicting arterial blood concentrations to be directly proportional to
(alveolar) breath concentrations. Contrarily, by taking into account pre-alveolar up-
take as discussed in Section 3.1.1, the accumulation of exogenous acetone in the sys-
temic circulation is expected to be delayed due to the small contribution of bronchial
blood flow to overall perfusion.

Remark 4 The population spread of the fitted parameters within the study cohort
could be assessed, e.g., by a Bayesian [58] or mixed effects approach [43], which,
however would be beyond the scope of this paper. Here, the major aim rather is to
demonstrate the flexibility of the model in covering a wide spectrum of different
experimental scenarios.

From an operational perspective, one may consider the results stated in the pre-
vious paragraphs as a model tuning procedure for resting conditions. Accordingly,
in the remaining part of this paper both the stratified conductance parameter and
the fractional bronchial blood flow during rest will be frozen at their fitted values
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Drest = 0 and qrest
bro = 0.0043, respectively. Moreover, due to the high value of the

apparent Michaelis constant km as compared to the estimated acetone concentration
λb:livCliv in hepatic venous blood, acetone clearance from the liver can safely be pos-
tulated to obey linear kinetics in the sequel, cf. Equation (12). In particular, the ex-
tracted value of klin = vmax/km = 0.0074 l/kg0.75/min is interpreted as an intrinsic
property of acetone metabolism (with inter-individual variation being introduced by
multiplication with the 0.75 power of body weight). Hence, kmet as in Equation (12)
will be treated as a constant known parameter in the sequel.

4.3 Ergometer data sets and comparative evaluations

As has been indicated in the introduction, a primary motivation for this work was to
develop a model elucidating the features of breath acetone behavior observed during
moderate workload ergometer challenges. A representative profile corresponding to
one single normal healthy volunteer is shown in Fig. 6, cf. [40]. As has been demon-
strated there, end-tidal acetone levels in response to exercise generally resemble the
profile of alveolar ventilation and inhalation volume, showing abrupt increases and
drops in the range of 10 – 40% at the onsets and stops of the individual workload
periods, respectively (see also Fig. 6 (a), first panel). Similarly, a series of auxiliary
experiments carried out by means of the same instrumental setup revealed that in-
creasing tidal volume during rest results in increased breath acetone concentrations,
while increasing respiratory frequency has a less pronounced impact, cf. Fig. 6 (b).
Both effects appear to support the hypothesis of Section 3.1.3 that acetone exchange
is strongly influenced by volume and speed of inhalation and hence suggest that any
model not incorporating this mechanism will fail to reproduce the above results. In
particular, note that from the viewpoint of the classical Farhi description (1) the pro-
file in Fig. 6 is rather counter-intuitive. For instance, during hyperventilation acetone
supply from the bloodstream will stay roughly constant, while a drastic increase in
ventilation should enhance the dilution of alveolar air and would therefore be ex-
pected to (slightly) decrease the corresponding breath concentration.

From the above, we view exercise and hyperventilation scenarios as an interesting
control setting for testing the physiological adequacy of the newly developed model.
Moreover, these two scenarios provide a novel framework for contrasting the predic-
tive power of distinct mechanistic frameworks put forward in the literature. Specif-
ically, in the following we shall use the individual acetone behavior as depicted in
Fig. 6 as the basis for comparing the performance of Equations (14)–(17) with the
standard formulation due to Farhi as well as with the physiological compartment
model introduced by Mörk et al. [57], which can be viewed as the current state of the
art in acetone pharmacokinetic modeling. In particular, the latter model represents
a first improvement over the Farhi description in that it has been found capable of
adequately reproducing the bioaccumulation behavior presented in the previous sub-
section. Mörk et al. also discuss several shortcomings of earlier models proposed in
this context.

While the Farhi description is just a special case our model (by setting qbro = 0
and D→ ∞, cf. Fig. 4), the model of Mörk et al. will be re-implemented in slightly
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modified form by replacing the mass balance Equations (14)–(15) of the respiratory
tract with Equations (4)–(7) in [57]. The body compartments remain unchanged. Ad-
ditional parameter values are taken from [57].

Letting CI ≡ 0 and Cbro(0) = 1.3 µg/l, the initial compartment concentrations
for all three models as well as the endogenous production rate kpr can uniquely be
determined by solving the associated steady state equations at t0 = 0. This completely
specifies the models by Farhi and Mörk et al.. Contrarily, the response for the present
model is computed by solving the ordinary least squares problem

argmin
α

N

∑
i=0

(
yi−Cbro(ti)

)2
, s.t. α ≥ 0 (positivity) (28)

within the time interval [t0, tN ] = [0, tmax]. Here, yi =Cmeasured,i is the observed acetone
concentration at time instant ti and α = (α1, . . . ,αm−1) is the coefficient vector for
the piecewise linear function

D̂(t) :=
m−1

∑
j=1

α jS j(t), S j(t) :=


t−s j−1
s j−s j−1

t ∈ [s j−1,s j]
s j+1−t

s j+1−s j
t ∈ [s j,s j+1]

0 otherwise

(29)

used for deriving an approximation of the time-varying stratified conductance param-
eter D ∈ [0,∞) on m subintervals covering the time span [t0 = s0, tmax = sm]. Here the
nodes s j are chosen to result in an equidistant partition of about 0.5 min, cf. Fig. 6,
third panel. For simulation purposes the measured physiological functions are con-
verted to input function handles u by applying a local smoothing procedure to the as-
sociated data and interpolating the resulting profiles with splines. The aforementioned
optimization problem was solved as described in Section 4.2. Fig. 6 summarizes the
results of these calculations.

The visually good fit can formally be assessed by residual analysis. Plots of the
resulting residuals versus time and versus model predictions clearly exhibit random
patterns, suggesting that the assumptions of i.i.d., homoscedastic additive measure-
ment errors underlying ordinary least squares methodology are reasonable [10]. Fur-
thermore, no statistically significant autocorrelation among the residuals or cross-
correlation between the residuals and the measured inputs could be detected, indicat-
ing that the model has picked up the decisive dynamics underlying the data.

While all three models will describe the steady state at rest, only Equations (14)–
(17) tolerably capture the entire observable dynamical behavior. Particularly, the pre-
dictions resulting from the models due to Farhi and Mörk et al. are almost indistin-
guishable within this experimental regime and both will depart only slightly from the
initial equilibrium states.
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Fig. 6 Typical profile of end-exhaled acetone concentrations in response to the following physiologi-
cal regime: rest (0-3 min), ergometer challenge at 75 W (3-12 min), rest (12-20 min), hyperventilation
with increased tidal volume (20-22 min), rest (22-25 min), high-frequency hyperventilation (25-28 min),
rest (28-30 min). Data correspond to one representative healthy male volunteer from the study cohort
in [40]. Measured or derived quantities according to the experimental setup are indicated in red, while
black tracings correspond to simulated variables. Panel 1: Measured acetone concentrations in end-tidal
breath and associated model predictions; Panel 2: Simulated compartment concentrations according to
Equations (14)–(17); Panel 3–5: Measured physiological parameters according to Table 1. The mucus:air
partition coefficient λmuc:air and the time-varying stratified conductance parameter D̂ are derived from
Equation (7) and (29), respectively.

In contrast, the newly proposed model indeed appears to incorporate the deci-
sive physiological mechanism underlying the step-shaped dynamics of breath ace-
tone concentrations in response to constant load exercise and hyperventilation. Cor-
respondingly, according to the second panel in Fig. 6, measured (i.e., bronchial) lev-
els markedly differ from the alveolar ones due to the effective diffusion barrier be-
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tween the two spaces represented by a value of Drest ≈ 0, cf. Section 4.2. As soon
as tidal volume and/or respiratory frequency are increased, this barrier will vanish
to some extent according to the processes discussed in Section 3.2.2, thus causing
Cbro = Cmeasured to approach a value closer to CA. In contrast, CA itself as well as the
breath acetone profiles simulated by means of the other two models remain relatively
constant. This is consistent with the behavior expected from the Farhi formulation,
predicting minimal sensitivity of alveolar concentrations with respect to fluctuations
of the ventilation-perfusion ratio for highly soluble trace gases. In other words, the
major part of short-term variability observable in breath acetone concentrations dur-
ing free breathing can be attributed to airway gas exchange, with minimal changes
of the underlying blood and tissue concentrations. In particular, note that with the
present model the observed acetone dynamics can again be captured by assuming a
constant endogenous production rate kpr ≈ 0.17 mg/min. The above-mentioned rea-
soning appears to agree with previous observations in the literature, where the excre-
tion of acetone has been demonstrated to increase during moderate exercise [72].

Remark 5 The high degree of interplay between D̂ and V̇A as well as VT discernible
in the third panel of Fig. 6 suggests that the time-dependency of D can essentially be
captured using these two respiratory variables. Different heuristic relationships might
be investigated in this context, see Equation (23) for instance. Correspondingly, by
repeating the optimization procedure in (28) with α being replaced by (kdiff,1,kdiff,2)
we find that the associated model response again is in good agreement with the ob-
served data. The practical identifiability of these two parameters at their optimized
values kdiff,1 = 14.9 and kdiff,2 = 0.76 was confirmed along the lines of Remark 2.
Hence, the parameterization in Equation (23) might be used to reduce the originally
infinite dimensional estimation problem for D to two degrees of freedom.

While in Section 4.1 it has been confirmed that the model is structurally locally
observable, we stress the fact that data corresponding to exercise or hyperventila-
tion tests as presented above will usually not allow for a joint numerical estimation
of some of the above variables. For perspective, it should be clear from the approx-
imately constant profile of Cliv in Fig. 6 that kpr and kmet can hardly be assessed
simultaneously, as both values are coupled via a single steady state equation asso-
ciated with Equation (16). Using similar reasoning, smaller values of qrest

bro (leading
to larger steady state concentrations CA(0)) can be compensated for by smaller con-
stants kdiff, j, giving rise to an almost identical model output. Again, such a situa-
tion might formally be investigated by means of practical identifiability techniques
(cf. [38, Sect. 3.1]), e.g., by calculating pairwise correlation coefficients between
the sensitivities of the model output with respect to the parameters under scrutiny.
In the present context, values of these indices associated with (kmet,kpr) as well as
(kdiff,1,qrest

bro ) and (kdiff,2,qrest
bro ) are close to 1 or −1, thereby revealing a substantial

degree of collinearity between the corresponding sensitivities and providing strong
indications that a proper estimation of any of these pairs on the basis of moderate
exercise challenges as above cannot be anticipated. Such identifiability issues can
only be circumvented by designing (multi-)experimental regimes guaranteeing a suf-
ficiently large and independent influence of all parameters to be estimated.
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5 Discussion and critical remarks

The main intention of this section is to critically review and clarify some of the as-
sumptions underlying the model derivation as well as to indicate some potential im-
provements of the present formulation.

Diffusion equilibrium in the bronchial tract. While it is commonly agreed upon that
the transport of inert gases between the alveolar space and end-capillary blood is
perfusion-limited [86], a similar premise in the case of airway gas exchange remains
less certain. Experimental and theoretical evidence appears to favor the view that
although a diffusion equilibrium might be attained at the air-mucus interface [83,
46], the bronchial epithelial tissue can constitute an effective diffusion barrier be-
tween the mucus lining and the bronchial circulation. The magnitude of this diffu-
sional resistance is probably substance-specific, with an inverse relation to molecular
weight [80]. In this sense, the fractional bronchial blood flow qbro has to be inter-
preted as effective perfusion of those mucosal tissue layers for which an instanta-
neous equilibrium with air can be achieved [45]. Specifically, qbro might differ for
distinct compounds. While animal models seem to support the assumption of a com-
plete equilibration between air stream and bronchial circulation in the special case of
acetone [80], it might be necessary to include a diffusion limitation between these two
compartments in order to extend the validity of the model over a wider range of highly
water soluble VOCs. The statistical significance of such generalizations can then be
assessed by employing residual based comparison techniques for nested models as
described in [10,9]. However, at the current stage of research and given the limited
data on the behavior of breath trace gases having similar physico-chemical charac-
teristics like acetone, we prefer to maintain a parameterization as parsimonious as
possible.

Continuous ventilation and temperature dependence. Due to the tidal nature of breath-
ing, bronchial as well as alveolar gas concentrations will vary throughout the breath-
ing cycle, following a roughly periodical pattern during normal breathing. These vari-
ations can be captured by considering two separate mass balance systems, describ-
ing the dynamics of the associated concentrations for each inhalation and exhalation
phase, respectively [53,45,5]. While such microscopic formulations are of paramount
importance for resolving events within one individual respiratory cycle, when look-
ing at the mid- to long-term behavior of breath VOCs we are rather interested in
the global dynamics of the averaged compartmental concentrations. This approach
leads to models of continuous ventilation with a unidirectional gas stream and has
the enormous operational advantage of reducing the model structure to one single
mass balance system.

Variable temperature distributions in the bronchial compartment are represented
by a single mean temperature T̄ according to Equation (5), thereby lumping together
our ignorance regarding the exact temperature profile along the airways. Different
functional relationships might be investigated here.

156 CHAPTER 8. PAPER D



26

In summary, this paper introduces a novel compartmental description of pul-
monary gas exchange and systemic distribution of blood-borne, highly blood and
water soluble VOCs, which faithfully captures experimentally determined end-tidal
acetone profiles for normal healthy subjects during free breathing in distinct physi-
ological states. Particularly, the model has been tested in the framework of external
exposure as well as exercise scenarios and illuminates the discrepancies between ob-
served and theoretically predicted blood-breath ratios of acetone during resting condi-
tions, i.e., in steady state. In this sense, the present formulation provides a good com-
partmental perspective of acetone exhalation kinetics and is expected to contribute to
a better understanding of distribution, transport, biotransformation and excretion pro-
cesses of acetone in different functional units of the organism as well as their impact
on the observed breath concentration.

While we are well aware of the fact that the number of data sets used for model
validation is relatively small, exposure and exercise regimes currently are the only
published experimental settings covering non-steady state acetone behavior in hu-
mans. Further validation will thus have to await additional experimental efforts. In
this context, preliminary tests conducted with the intention of extending the range of
applicability for the presented formulation to the framework of isothermal rebreath-
ing show promising results [42].

The emphasis of this work has been laid on deriving a sound mathematical for-
mulation flexible enough to cover a wide spectrum of possible VOC behavior, while
simultaneously maintaining physiological plausibility as well as a clear-cut interpre-
tation of the involved parameters. Care has been taken to keep the parameterization as
parsimonious as possible, thereby constructing a novel “minimal” model respecting
fundamental physiological boundary conditions, such as boundedness of the asso-
ciated trajectories and the existence of a globally asymptotically stable equilibrium
state. While a complete sensitivity and practical identifiability analysis was beyond
the scope of this paper and has to be matched to the particular experimental frame-
work in which the model will be used, general concepts from structural and practical
identifiability have been exploited in order to provide some indications regarding the
information content of the observable breath level with respect to the endogenous
situation.
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A Some fundamental model properties

Equations (14)–(17) can be written as a time-varying linear inhomogeneous ODE system

ċ = A(u,p)c+b(u,p) =: g(u,c,p) (30)
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in the state variable c := (Cbro,CA,Cliv,Ctis)T , which is dependent on a time-independent parameter vector
p as well as on a vector u := (V̇A, Q̇c,VT,λmuc:air(Cwater),CI) of bounded, non-negative functions lumping
together all measured variables. The associated measurement equation reads

y = Cmeasured = (1,0,0,0)c =: h(c). (31)

In the present paragraph we are going to discuss some qualitative properties of the system presented.
Firstly, as the system is linear, for any given initial condition c(0) there is a unique global solution. More-
over, A is a Metzler matrix and b≥ 0. Consequently ci = 0 implies that ċi ≥ 0 for every component and it
follows that the trajectories remain non-negative. Thus, (30) constitutes a positive system with the state c
evolving within the positive orthant Rn

>0 := {c |c ∈ Rn, ci > 0, i = 1, . . . ,n}, where n = 4.

Proposition 1 All solutions of (30) starting in Rn
>0 remain bounded.

Proof This can be shown by considering the total mass m := ∑Ṽici ≥ 0 and noting that

ṁ = kpr− kmetλb:livCliv +V̇A(CI−Cbro). (32)

Taking into account positivity of the solutions and the involved parameters this shows that Cliv is bounded
from above for bounded CI, since the assumption that Cliv is unbounded yields a contradiction. Anal-
ogously, Cbro and CA can be shown to be bounded by considering m̃ := ṼbroCbro + ṼACA + ṼtisCtis and
similarly for Ctis.

Furthermore, it can be proven that under physiological steady state conditions, i.e., for constant u, the
above system has a globally asymptotically stable equilibrium ce :=−A−1b. To this end it suffices to show
that the time-invariant matrix A is Hurwitz, i.e., all real parts of the associated eigenvalues are negative.

Proposition 2 Suppose u is time-independent. Then the real parts of all eigenvalues of A(u,p) are non-
positive. They are strictly negative if det(A(u,p)) 6= 0.

Moreover, det(A(u,p)) = 0 if and only if either Q̇c vanishes or two of the quantities V̇A,qliv,kmet
vanish.

Proof For this it is sufficient to confirm that A is diagonally dominant, i.e., there exists a vector z > 0 such
that the row vector zT A is non-positive. This is a simple consequence of the fact that in such a case A can
be shown to be similar to a matrix Ã which has the claimed property. Indeed, if we define the diagonal
matrix U := diag(z1, . . . ,zn) and set Ã := UAU−1, it holds that

ã j j + ∑
i 6= j
|ãi j|= a j j + ∑

i6= j

ai jzi

z j
=

1
z j

(zT A) j ≤ 0 (33)

for all j since A is Metzler. Moreover, note that ã j j < 0 for all j. Hence, the first claim will follow from
Gershgorin’s circle theorem. The required vector z follows from

(Ṽbro,ṼA,Ṽliv,Ṽtis)A = (−V̇A,0,−kmetλb:liv,0).

Moreover, the only case when the real part of an eigenvalue can vanish is when it lies on the boundary of
a circle touching the imaginary axis, that is, when an eigenvalue is zero. This proves the first part.

To show the second part one verifies that

det(A) = Q̇c
(
(ϑ1V̇A +ϑ2kmet)qlivQ̇c +ϑ3V̇Akmet

)
(34)

with ϑ j > 0.

This completes the minimal set of properties which necessarily should to be satisfied in any valid
model of concentration dynamics. In particular, global asymptotic stability for the autonomous system
ensures that – starting from arbitrary initial values – the compartmental concentrations will approach a
unique equilibrium state once the physiological inputs u affecting the system are fixed. Obviously, this is
of paramount importance when aiming at the description of processes exhibiting pronounced steady states
(which in the context of breath gas analysis corresponds, e.g., to the situation encountered during rest or
constant workload [40]) and a prerequisite for orchestrating reproducible experiments. Hence, in the con-
text of VOC modeling, any approach not incorporating this property will lack a fundamental characteristic
of the observed data.
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Remark 6 For perspective, we stress the fact that if the rate of metabolism in Equations (14)–(17) is
described by saturation rather than linear kinetics, i.e., if the term kmetClivλb:liv in Equation (16) is replaced
by Equation (11), the system becomes essentially nonlinear. However, all conclusions drawn so far remain
generally valid. Firstly, by applying the Mean Value Theorem note that the Michaelis-Menten term above
is Lipschitz and so again a global Lipschitz property holds for the right-hand side of the resulting ODE
system. Positivity and boundedness of the solutions for arbitrary inputs u can be established in analogy
with the arguments in the last paragraphs. Effectively, in order to show boundedness from above, we first
note that Equation (32) now reads

ṁ = kpr− vmaxClivλb:liv

km +Clivλb:liv
+V̇A(CI−Cbro) (35)

and as a result Cbro is unconditionally bounded if V̇A > 0. From Equation (14) it then follows that CA
must be bounded and subsequently Cv̄ (and hence Cliv as well as Ctis) are bounded using Equation (15). In
the case V̇A = 0, the inequality kpr ≤ vmax is necessary and sufficient for boundedness. Necessity is easily
deduced from the fact that kpr > vmax implies ṁ > 0 and consequently m (i.e., at least one component
ci) is unbounded. Conversely, the constraint kpr ≤ vmax ensures that Cliv is bounded and hence the same
arguments as in the linear case apply.
In order to establish the existence of a globally asymptotically stable equilibrium point for fixed u we
adopt a result on monotone systems taken from Leenheer et. al. [48], see also [31]. For monotone systems
in general with applications to biological systems we refer to [76,8]. Firstly, note that the steady state
relation associated with Equation (16) now becomes

0 = C2
liv +a1Cliv +a0 (36)

with a0 < 0. Thus, there exists a unique positive steady state solution for the liver concentration Cliv
and consequently the same can be confirmed to hold true for the other components of c as well. As a
consequence, it follows that the model has a unique equilibrium point in the non-negative orthant X :=
Rn
≥0. Moreover, note that for the right-hand side g of the underlying ODE system (cf. Equation (30)) it

holds that
∂gi

∂c j
≥ 0 for i 6= j, i, j ∈ {1, . . . ,n}, (37)

i.e., the system is cooperative. This term stems from the fact that a given component is positively affected
by the remaining ones. For linear systems, an equivalent characterization is that the corresponding system
matrix A is Metzler. A well-known result on this type of system asserts that the associated semiflow Φ :
R≥0×Rn→Rn, (t,c0) 7→Φt(c0) := c(t) is monotone with respect to the natural (componentwise) partial
order on Rn given by

c≤ z if and only if ci ≤ zi, i ∈ {1, . . . ,n}.
That is, Φ preserves the order of the initial conditions (see [76], Prop. 3.1.1), i.e., for c0, c̃0 ∈ Rn the
condition c0 ≤ c̃0 implies that Φt(c0)≤Φt(c̃0) for t ∈ [0,∞). As a third requirement, since all trajectories
are bounded and the system evolves within the closed state space X ⊂Rn it follows that for every c ∈X
the corresponding semi-orbit O(c) := {Φt(c), t ≥ 0} has compact closure. In summary, we are now in the
situation to apply Theorem 5 of [48], which asserts that the aforementioned properties are sufficient for
the unique equilibrium point in X to be globally attractive.
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B Nomenclature
Table 3 Basic model parameters and nominal values during rest; LBV denotes the lean body volume in
liters calculated according to LBV =−16.24+0.22bh+0.42bw, with body height (bh) and weight (bw)
given in cm and kg, respectively [57].

Parameter Symbol Nominal value (units)

Compartment concentrations

bronchioles Cbro, Cmeasured 1 (µg/l) [74]
alveoli CA

arterial Ca 1 (mg/l) [91,35]
mixed-venous Cv̄

liver Cliv

tissue Ctis

inhaled (ambient) CI

Compartment volumes

bronchioles Vbro 0.1 (l) [57]
mucosa Vmuc 0.005 (l) [57]
alveoli VA 4.1 (l) [57]
end-capillary Vc′ 0.15 (l) [29]
liver Vliv 0.0285 LBV (l) [57]
blood liver Vliv,b 1.1 (l) [64]
tissue Vtis 0.7036 LBV (l) [57]

Fractional blood flows at rest

fractional flow bronchioles qbro 0.01 [52]
fractional flow liver qliv 0.32 [57]

Partition coefficients at body temperature

blood:air λb:air 340 [7,18]
mucosa:air λmuc:air 392 [78,44]
blood:liver λb:liv 1.73 [44]
blood:tissue λb:tis 1.38 [7]

Metabolic and diffusion constants

linear metabolic rate kmet 0.0074 (l/min/kg0.75) [fitted]
saturation metabolic rate vmax 0.31 (mg/min/kg0.75) [44]
apparent Michaelis constant km 84 (mg/l) [44]
endogenous production kpr 0.19 (mg/min) [fitted]
stratified conductance D 0 (l/min) [fitted]
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Abstract Over the past decade, much advance has been made in the attempt to ex-
ploit the diagnostic and metabolic information encapsulated in a number of endoge-
nous volatile organic compounds (VOCs) appearing in human exhaled breath. How-
ever, the causal understanding of the relationships between breath concentrations of
such trace gases and their underlying systemic levels clearly lags behind the enor-
mous analytical progress in this field. In particular, formal means for evaluating the
information content and predictive power of various sampling regimes are still lack-
ing.
Here, we focus on isothermal rebreathing which has been proposed as an experi-
mental technique for estimating the alveolar levels of hydrophilic VOCs in exhaled
breath. Using the prototypic test compound acetone we demonstrate that the end-tidal
breath profiles of such substances during isothermal rebreathing show characteristics
that contradict the conventional pulmonary inert gas elimination theory due to Farhi.
On the other hand, these profiles can reliably be captured by virtue of a previously
developed mathematical model for the general exhalation kinetics of highly soluble,
blood-borne VOCs, which explicitly takes into account airway gas exchange as major
determinant of the observable breath output.
This model allows for a mechanistic analysis of various rebreathing protocols sug-
gested in the literature. In particular, it clarifies the discrepancies between in vitro and
measured blood:breath ratios of hydrophilic VOCs and yields further quantitative in-
sights into the physiological components of isothermal rebreathing.

Keywords breath gas analysis · volatile organic compounds · rebreathing · acetone ·
modeling

PACS 87.80.-y · 82.80.Ms

1 Introduction

Recently, several efforts have been undertaken to complement measurements of vola-
tile organic compounds (VOCs) occurring in human breath with adequate physical
models mapping substance-specific distribution mechanisms in the pulmonary tract
as well as in the body tissues. Some major breath VOCs have already been inves-
tigated in this form, e.g., during exercise conditions or exposure scenarios [18,21,
27,2,23]. Such mechanistic descriptions of the observable exhalation kinetics will
not only contribute to a better understanding regarding the relevance of the extracted
breath concentration with respect to the endogenous situation (i.e., with respect to
blood or tissue concentrations, which in turn can be seen as the decisive quantities
for exploiting the diagnostic potential of breath VOCs [1]) but might also serve as
valuable tools for evaluating the information content and predictive power of vari-
ous experimental regimes proposed for breath gas analytical investigations. Within
this context, the main focus of this article will be on a modeling-based review of
isothermal rebreathing, which has been proposed as an experimental technique for
estimating the alveolar levels of hydrophilic exhaled trace gases [16,30]. This class
of compounds has been demonstrated to significantly interact with the water-like mu-
cus membrane lining the conductive airways, an effect which has become known as
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wash-in/wash-out behavior. For further details we refer to [2,3]. As a phenomeno-
logical consequence, exhaled breath concentrations of such highly water soluble sub-
stances tend to be diminished on their way up from the deeper respiratory tract to
the airway opening. The resulting discrepancies between the “true” alveolar and the
measured breath concentration can be substantial (even if breath samples are drawn
in a strictly standardized manner employing, e.g., CO2- or flow-controlled sampling)
and will depend on a variety of factors, such as airway temperature profiles and air-
way perfusion as well as breathing patterns.

In particular, the above-mentioned effect considerably departs from the classical
Farhi description of pulmonary inert gas exchange [8], on the basis of which the oper-
ational dogma has been established that end-tidal air will reflect the alveolar level and
that arterial concentrations can be assessed by simply multiplying this value with the
blood:gas partition coefficient λb:air at body temperature. This “common knowledge”
has first been put into question in the field of breath alcohol testing, revealing ob-
servable blood-breath concentration ratios of ethanol during tidal breathing that are
unexpectedly high compared to the partition coefficient derived in vitro [16]. Sim-
ilarly, excretion data (defined as the ratio between steady state partial pressures in
expired air and mixed venous blood) of highly water soluble compounds (including
the MIGET test gas acetone) have been shown to underestimate the values anticipated
by treating the airways as an inert tube [38,4].

In a previously published mathematical model for the breath gas dynamics of
highly soluble trace gases, airway gas exchange is taken into account by separating
the lungs into a bronchial and alveolar compartment, interacting via a diffusion bar-
rier mimicking pre- and post-alveolar uptake [21]. This formulation has proven its
ability to reliably capture both end-tidal breath profiles as well as systemic dynamics
of acetone in a variety of experimental situations and will be used here for illumi-
nating the physiological processes underlying isothermal rebreathing tests as carried
out in the literature. For comparative reasons, the illustration here will mainly be lim-
ited to acetone, with possible extrapolations to other highly soluble VOCs indicated
where appropriate.

2 Methods

2.1 Experiments

Extensive details regarding the experimental input of our investigations are given
elsewhere [19]. Here, we will only briefly discuss the parts of the setup relevant for
the present context. All phenomenological results in the sequel are obtained in con-
formity with the Declaration of Helsinki and with the necessary approvals by the
Ethics Commission of Innsbruck Medical University.

The rebreathing system itself consists of a Tedlar bag with volume Ṽbag = 3 l that
can directly be connected to a spirometer headmask, from which end-tidal exhalation
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segments are drawn into a Proton Transfer Reaction Mass Spectrometer (PTR-MS;
Ionicon Analytik GmbH, Innsbruck, Austria) as described in [19]. The bag is warmed
to 37 ± 1 ◦C using a specially designed outer heating bag (Infroheat Ltd., Wolver-
hampton, UK) as described in [29]. This is intended to assist the thermal equilibration
between the alveolar tract and the upper airways as well as to prevent condensation
and subsequent losses of hydrophilic VOCs depositing onto water droplets forming
on the surface wall of the bag. End-tidal acetone concentrations are determined by
monitoring its protonated form at m/z = 59 (dwell time: 200 ms). Additionally, we
routinely measure the mass-to-charge ratios m/z = 21 (isotopologue of the primary
hydronium ions used for normalization; dwell time: 500 ms), m/z = 37 (first monohy-
drate cluster for estimating sample humidity; dwell time: 2 ms), m/z = 69 (protonated
isoprene; dwell time: 200 ms), m/z = 33 (protonated methanol; dwell time: 200 ms)
as well as the parasitic precursor ions NH+

4 and O+
2 at m/z = 18 and m/z = 32, re-

spectively, with dwell times of 10 ms each. In particular, the pseudo concentrations
associated with m/z = 32 determined according to the standard conversion formula
(1) in [32] will be used as an indicator for the end-tidal partial partial pressure PO2 of
oxygen, relative to an assumed nominal steady state level at rest of about 100 mmHg.
Similarly, calibrated pseudo concentrations corresponding to m/z = 37 are consid-
ered as surrogates for absolute sample humidity Cwater [21]. Partial pressures PCO2 of
carbon dioxide are obtained via a separate sensor. Table 1 summarizes the measured
quantities used in this paper. In general, breath concentrations will always refer to
end-tidal levels. An underlying sampling interval of 5 s is applied for each variable.

Table 1 Summary of measured parameters together with some nominal literature values during rest, as-
suming ambient conditions; breath concentrations refer to end-tidal levels.

Variable Symbol Nominal value (units)

Cardiac output Q̇c 6 (l/min) [26]
Alveolar ventilation V̇A 5.2 (l/min) [36]
Acetone concentration Cmeasured 1 (µg/l) [33]
CO2 partial pressure PCO2 40 (mmHg) [24]
Water content Cwater 4.7 (%) [13]
O2 partial pressure PO2 100 (mmHg) [24]

2.2 Physiological model

For the sake of completeness, the model structure is presented in Fig. 1, while for
the associated compartmental mass balance equations we refer to the appendix and
the original publication [21]. The body is divided into four distinct functional units,
for which the underlying concentration dynamics of the VOC under scrutiny will be
taken into account: bronchial/mucosal compartment (Cbro; gas exchange), alveolar/end-
capillary compartment (CA; gas exchange), liver (Cliv; production and metabolism)
and tissue (Ctis; storage). The nomenclature is detailed in the legend of Fig. 1.
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Fig. 1 Sketch of the model structure used for capturing dynamic VOC concentrations C. Subscripts con-
note as follows: bag, rebreathing bag; I, inhaled; bro, bronchial; muc, mucosal; A, alveolar; c′, end-
capillary; liv, liver; tis, tissue; b, blood. Dashed boundaries indicate a diffusion equilibrium, governed by
the respective partition coefficients λ , e.g., λmuc:air.

The measurement process is described by

Cmeasured = Cbro, (1)

i.e., we assume that measured (end-tidal) breath concentrations reflect the bronchial
levels.
In particular, for highly water and blood soluble compounds such as acetone the
present model replaces the familiar Farhi equation describing the steady state rela-
tionship between inhaled (ambient) concentration CI, measured breath concentration
CF

measured, mixed venous concentration Cv̄ and arterial concentration Ca during tidal
breathing,

CF
measured = CA =

V̇A
Q̇c

CI +Cv̄

λb:air +
V̇A
Q̇c

=
Ca

λb:air
, (2)

with the expression

Cmeasured = Cbro =
rbroCI +(1−qbro)Cv̄

(1−qbro)
λmuc:air
λmuc:b

+ rbro
=

rbroCI +Ca
λmuc:air
λmuc:b

+ rbro
. (3)
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Here, qbro � 1 is an estimate of the effective fractional bronchial perfusion (which
might be substance-specific), while

rbro =
V̇A

qbroQ̇c

denotes the associated bronchial ventilation-perfusion ratio.

An explicit temperature dependence of airway gas exchange is incorporated into
the model via the mucosa:air partition coefficient λmuc:air = λmuc:air(T̄ ), varying ac-
cording to a characteristic mean airway and bronchial blood temperature T̄ (in ◦C).
Specifically, the latter has been shown to be accessible by virtue of the measured
sample humidity Cwater (see [21]). Furthermore, it is assumed that the solubilities
in bronchial blood and the mucus layer are proportional over the temperature range
considered, with the proportionality constant given by

λmuc:b := λmuc:air(37 ◦C)/λb:air(37 ◦C). (4)

As a first approximation, the mucosa layer can be assumed to inherit the physico-
chemical properties of water. In particular, λmuc:air will properly be reflected by the
respective substance-specific water:air partition coefficient, which is usually avail-
able from the literature (see, e.g., the compendium in [35]).

A central role is played by the gas exchange location parameter D, mimicking pre-
and post-alveolar uptake in the mucosa. As has been discussed in [21], for highly wa-
ter soluble substances D is close to zero during rest and will increase with ventilatory
flow. Here, we will model this dependency as

D(V̇A) := kdiff max{0,V̇A−V̇ rest
A }, kdiff ≥ 0. (5)

Again, kdiff constitutes an a priori unknown value that will have to be estimated from
experimental data.

2.3 Heuristic considerations

As has already been indicated in the introduction, Equation (2) is inappropriate for
capturing experimentally obtained arterial blood-breath concentration ratios (BBR)
of highly water soluble trace gases during free breathing at rest (i.e., assuming CI =
0). For instance, in the specific case of acetone, multiplying the proposed popula-
tion mean of approximately 1 µg/l [33] in end-tidal breath with a blood:gas partition
coefficient of λb:air = 340 [5] at body temperature appears to grossly underestimate
arterial blood levels spreading around 1 mg/l [17,37].

In contrast, Equation (3) asserts that the observable arterial blood-breath ratio is

BBR =
Ca

Cmeasured
= λmuc:air(T̄ )/λmuc:b + rbro (≥ λb:air), (6)
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and will thus depend on airway temperature and airway blood flow as mentioned in
the previous paragraph. From the last expression it is clear that the higher (water) sol-
uble a VOC under scrutiny, the more drastically its observable BBR will be affected
by the current airway temperature, with an inverse relation between these two quanti-
ties. This deduction is consistent with measurements by Ohlsson et al. [30] conducted
in the field of alcohol breath tests, reporting a monotonous decrease of BBR values for
ethanol with increasing exhaled breath temperature. In the same contribution, BBRs
of ethanol during normal tidal breathing were shown to typically exceed a value of
2500, which differs from the expected value λb:air = 1756 by more than 40%. For
perspective, assuming a mean characteristic airway temperature of T̄ = 34 ◦C dur-
ing free tidal breathing, based on Equations (4) and (6) as well as on the values for
λmuc:air given in [35], we predict an experimentally observable blood-breath ratio of
ethanol ≥ 2300. On the other hand, blood-breath ratios of less soluble VOCs, e.g.,
acetone, will additionally be affected by the comparatively large value of rbro, which
stems from the diffusion disequilibrium between the alveolar and bronchial space.

Apart from providing some experimental evidence for the validity of Equation (3),
these ad hoc calculations suggest that the common practice of multiplying the mea-
sured breath concentration Cmeasured with the in vitro blood:air partition coefficient
λb:air to obtain endogenous arterial concentrations for highly water soluble gases will
result in an estimation that might drastically differ from the true blood level.

In the following we will review isothermal rebreathing as a valuable method
for removing the aforementioned discrepancies. The heuristic intention leading to
isothermal rebreathing is to create an experimental situation where the alveolar levels
of highly soluble VOCs are not altered during exhalation due to loss of such sub-
stances to the cooler mucus layer of the airways. This can be accomplished by “clos-
ing the respiratory loop”, i.e., by continuous re-inspiration and -expiration of a fixed
mass of air from a rebreathing receptacle (e.g., a Tedlar bag), causing the airstream to
equilibrate with the mucosa linings over the entire respiratory cycle [30,5,29]. Ad-
ditionally, warming the rebreathing volume to body temperature (hence isothermal)
will ensure similar solubilities of these VOCs in both regions, alveoli and airways.
Formally, a model capturing the experimental situation during isothermal rebreathing
can simply be derived by augmenting the previous model equations with an additional
compartment representing the rebreathing receptacle, i.e.,

dCbag

dt
Ṽbag = V̇A(Cbro−Cbag) (7)

and setting CI = Cbag. Following the line of argument in Appendix A of [21], it can
easily be checked that all fundamental system properties discussed there remain valid.
In particular, if we assume that the conducting airways are warmed to body tempera-
ture, i.e.,

λmuc:air

λmuc:b
→ λmuc:air(37 ◦C)

λmuc:b
= λb:air (8)
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as temperature increases, we may conclude that the compartmental concentrations
will tend to a globally asymptotically stable steady state obeying

Crebr
measured = Crebr

bro = Crebr
bag = Crebr

A =
Crebr

v̄
λb:air

=
Crebr

a

λb:air
. (9)

This is a simple consequence of substituting CI with Cbro in Equation (3) accord-
ing to the steady state relation associated with Equation (7). Note that if steady state
conditions hold they will depend solely on the blood:air partition coefficient λb:air
at 37 ◦C, thus rendering isothermal rebreathing as an extremely stable technique for
providing a reproducible coupling between breath and endogenous (blood) levels.
Particularly, it theoretically avoids the additional measurement of ventilation- and
perfusion-related variables that would otherwise affect this relationship, thereby sig-
nificantly simplifying the required technical setup for breath sampling. However, as
will be illustrated in the following, the major practical obstacle is to guarantee that a
steady state as in Equation (9) is effectively attained.

For the purpose of comparing the qualitative implications of Equation (2) and
Equation (3), assume that Crebr

v̄ ≈Cv̄, i.e., the mixed venous concentrations stay con-
stant during rebreathing (which – at least in the first phase of rebreathing – can be
justified to some extent by reference to tissue lung transport delays of the systemic
circulation [11]). Then the ratios between measured rebreathing concentrations and
end-tidal concentrations during free breathing at rest predicted by Equation (2) and
Equation (3) are found to follow an entirely different trend. To this end, note that
while in the first case we find that

CF,rebr
measured

CF,free
measured

:=
CF

measured|CI=Cbag

CF
measured|CI=0

→
λb:air +

V̇A
Q̇c

λb:air
, (10)

the present model yields

Crebr
measured

Cfree
measured

→
(1−qbro)

λmuc:air
λmuc:b

+ rbro

(1−qbro)λb:air
. (11)

For highly soluble trace gases, this observation constitutes a simple test for assessing
the adequacy of the Farhi formulation regarding its ability to describe the correspond-
ing exhalation kinetics. Indeed, for sufficiently large λb:air, the right-hand side of
Equation (10) will be close to one, while the right-hand side of Equation (11) suggests
that rebreathing will increase the associated end-tidal breath concentrations. In other
words, for this class of compounds a non-constant behavior during the initial isother-
mal rebreathing period indicates that Equation (2) will fail to capture some funda-
mental characteristics of pulmonary excretion. Such tests are of particular importance
in the context of endogenous MIGET methodology (Multiple Inert Gas Elimination
Technique, based on endogenous rather than externally administered VOCs [4]), as
they might be used for detecting deviations of the proposed test gases from the un-
derlying Farhi description (see also [20]).
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3 Results

3.1 Single rebreathing

In this section we will discuss some simulations and preliminary experiments con-
ducted in order to study the predictive value of isothermal rebreathing within a realis-
tic setting. For this purpose we will first mimic isothermal rebreathing as it has been
carried out in various investigations [30,29]. We assume that Ṽbag = 3 l according to
Section 2.1.

Fig. 2 shows typical profiles of breath acetone, water, CO2 and oxygen con-
tent as well as cardiac output during normal breathing and isothermal rebreathing
at rest (starting after 1.5 minutes of quiet tidal breathing and ending at approximately
3.7 min). These representative data correspond to one single normal healthy volun-
teer. As has been explained in Section 2.1, PO2 is derived by scaling the end-tidal
steady state of the pseudo concentration at m/z = 32 to a basal value of 100 mmHg
during free breathing. Rebreathing was instituted by inhaling to total lung capacity
and exhaling until the bag was filled, thereby providing an initial bag concentration
which can be assumed to resemble the normal end-exhaled steady state, i.e.,

Cbag(0) = Cbro(0). (12)

Rebreathing was then continued until either the individual breathing limit was reached
or the CO2 concentrations increased above 55 mmHg. Due to the fact that our spirom-
eter system works on the basis of differential pressure with respect to ambient air,
alveolar ventilation V̇A could not reliably be measured during the rebreathing pe-
riod. However, this quantity can be simulated on the basis of monitored values for
end-tidal CO2 and O2 as follows. Under iso-oxic conditions, after a certain thresh-
old value is exceeded, ventilation is known to increase linearly with alveolar carbon
dioxide partial pressure. Moreover, the corresponding slopes (reflecting the chemore-
flex sensitivity of breathing) are dependent on the current alveolar oxygen partial
pressure (see also [24]). Here, it is assumed that alveolar levels reflect those of the
peripheral and central chemoreceptor environment. Hypoxia during rebreathing en-
hances chemoreflex sensitivity, yielding a hyperbolic relation between the mentioned
slopes and alveolar oxygen partial pressures. These findings result in a simple model
capturing the chemoreflex control of breathing in humans [7,25], which has been re-
implemented here in order to compute V̇A from basal values during free breathing as
shown in Fig. 2, fourth panel.

For identifiability reasons, the rate constant kmet describing linear acetone me-
tabolism in the liver is set to fixed value of kmet = 0.18 l/min [21]. This completes
the necessary data for simulating the aforementioned rebreathing experiment. More
specifically, the model response in the first panel of Fig. 2 is computed by solving the
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ordinary least squares problem

argmin
p

N

∑
i=0

(
yi−Cbro(ti)

)2
, s.t.


g(u0,p) = 0 (steady state)
p≥ 0 (positivity)
qbro ≤ 1 (normalization)
Cbag(0) = Cbro(0) (initial bag concentration)

with respect to the unknown vector p := (c0,kpr,kdiff,qbro) by means of a multiple
shooting algorithm as discussed in [21]. Here, yi denotes the measured breath data at
time instant ti (t0 = 0) and g is the right-hand side of the ODE mass balance system
associated with Fig. 1, cf. Appendix A. Moreover, c0 and u lump together the (par-
tially) unknown intial conditions c0 = (Cbag(0),Cbro(0),CA(0),Cliv(0),Ctis(0)) and
the measured input variables u = (Q̇c,V̇A,Cwater), respectively.
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Fig. 2 Representative outcome of an isothermal rebreathing experiment during rest. Data correspond to
one single normal healthy volunteer. Isothermal rebreathing starts after 1.5 minutes of quiet tidal breathing
and ends at approximately 3.7 min.
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From the previous figure, the fitted model is found to faithfully reproduce the
observed data, which extends the range of experimental situations for which the un-
derlying formalism has been validated. In contrast, as can be anticipated from Equa-
tion (10), the classical Farhi model fails to capture the given breath profile1.

In particular, the presented data appear to consolidate the heuristic considerations
in Section 2.3 and confirm that the alveolar concentration of acetone during free tidal
breathing will differ from the associated bronchial (i.e., measured end-exhaled) level
by a factor of up to 2. This is due to an effective diffusion disequilibrium between
the conducting airways and the alveolar space. During isothermal rebreathing, the
diffusion barrier slowly vanishes and causes the measured breath concentration to
approach the underlying alveolar concentration (which itself stays relatively constant
during the entire experiment). We stress the fact that in order to simulate a similar
response by using the conventional Farhi model, one essentially would have to pos-
tulate a temporarily increased endogenous acetone production during rebreathing,
which evidently lacks physiological plausibility.

For comparative reasons, in Fig. 2 we also provide the dynamic response of breath
methanol, scaled to match the initial level of breath acetone. Taking into account a
methanol blood:gas partition coefficient of λb:air = 2590 at body temperature [23],
from Equation (11) it can be deduced that for this compound the differences between
concentrations extracted during free breathing and rebreathing primarily stem from
the thermal equilibration between airways and alveolar tract as indicated in Equa-
tion (8). The associated rise in temperature is mirrored by an increase of sample
water vapor Cwater until approaching an alveolar level of about 6.2% [29]. In particu-
lar, the previously presented profile of methanol shows the necessity of including an
explicit temperature dependence in models describing the breath profiles of highly
soluble VOCs.

The visually convincing fit in Fig. 2 was further investigated by residual analy-
sis. Residual plots versus time and model predictions reveal random patterns, thereby
suggesting that the assumptions of independent, additive and homoscedastic error
terms underlying ordinary least squares methodology are reasonable. No statistically
significant autocorrelation among the residuals could be detected. As a result of these
ad hoc tests, we conclude that the residuals are interchangeable, which offers the pos-
sibility to construct bootstrap confidence intervals for assessing the uncertainty level
associated with the above estimates [14,34] (see also [18] for an application of boot-
strapping in a similar context). Bootstrapping (BS) appears to be particularly suitable
in this context, as it heavily relies on extensive resampling of high frequency process
data, the latter one being a natural characteristic of breath gas analytical investiga-
tions.

The confidence intervals in Table 2 suggest that under the previous assumptions
and constraints all unknown parameters and initial conditions except kdiff can be de-
termined from the acetone breath profile in Fig. 2 with reasonable accuracy. The rela-
tively poor estimability of kdiff within the experimental framework presented here can

1 Considering the fact that the Farhi formulation is included in the present model as a limiting case for
qbro = 0 and D→ ∞ [21], its associated output can again computed by solving an ordinary least squares
problem similar to the one presented above.
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mainly be ascribed to the low sensitivity of the observable breath concentration with
respect to this parameter (as can be deduced by computing the partial derivatives of
the model output with respect to kdiff, e.g., by solving the associated variational equa-
tions [12]). This problem might be circumvented by designing multi-experimental
regimes guaranteeing a sufficiently large and independent influence of all parame-
ters to be determined (e.g., rebreathing followed by a hyperventilation or moderate
exercise scenario as described in [21]).

Table 2 Decisive model parameters associated with the fit in Fig. 2 and corresponding bootstrap percentile
confidence intervals based on B = 200 resamples.

Variable Symbol Fitted value (units) BS 95% CIs

Fractional bronchial blood flow qbro 0.0052 (0.0044,0.0059)
Diffusion constant Eq. (5) kdiff 1.2 (0.34,4.77)
Endogenous acetone production kpr 91.54 (µg/min) (89.23,94.7)
Initial concentration bronchioles Cbro(0) 0.76 (µg/l) (0.74,0.79)
Initial concentration alveoli CA(0) 1.42 (µg/l) (1.38,1.47)
Initial concentration liver Cliv(0) 0.28 (mg/l) (0.27,0.29)
Initial concentration tissue Ctis(0) 0.35 (mg/l) (0.34,0.36)

While the preceding considerations suggest that inference on endogenous ace-
tone kinetics by virtue of exhaled breath measurements during isothermal rebreathing
is potentially feasible, it should be emphasized that the extracted values are clearly
model- as well as subject-dependent. Hence, further experimental evidence needs
to be gathered before such estimates can become practically relevant, particularly
with respect to distinct populations anticipated to provide characteristic experimen-
tal outcomes in response to the measurement regime indicated above. In this con-
text, it would be particularly interesting to determine the impact of pathologies that
are known to alter bronchial blood flow (such as asthma or bronchiectasis) on the
results of isothermal rebreathing tests. Summarizing, the presented analysis should
merely be seen as a preliminary proof of concept, that primarily aims at clarifying the
physiological mechanisms affecting the breath levels of highly soluble VOCs during
isothermal rebreathing.

3.2 Cyclic rebreathing

On the basis of the parameter values extracted in the previous subsection, in the fol-
lowing we will briefly discuss a sequential rebreathing protocol developed by O’Hara
et al. [29]. This regime aims at improving the patient compliance of conventional re-
breathing by repeatedly providing cycles of five rebreaths with intermediate periods
of free tidal breathing lasting approximately 10 minutes. Isothermal rebreathing is
instituted after 10 minutes of rest, again by inhaling to total lung capacity and ex-
haling to residual volume into a Tedlar bag with a volume of Ṽbag = 3 l. After each
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rebreathing cycle, the bag is closed, a small amount of bag air is measured and the vol-
unteer starts the next cycle by exhaling to residual volume and inhaling from the bag.
From the data in Fig. 2 we may assume that all input variables u = (Q̇c,V̇A,Cwater)
will have returned to pre-rebreathing values within the 10 minutes breaks and that
their behavior during the individual rebreathing segments (postulated to last 0.5 min-
utes) will roughly correspond to the profiles presented in Fig. 2. In particular, as
a drastic change of cardiac output could not be observed in the rebreathing phase
(see also [29]), we fix its value at a constant level of 6 l/min. Values for the initial
conditions c0 as well as for the additional parameters are adopted from the previ-
ous subsection and Table 2. These premises allow for the simulation of the repeated
rebreathing regime as displayed in Fig. 3.
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Fig. 3 Simulation of a cyclic rebreathing protocol with intermediate pauses of 10 minutes characterized
by free tidal breathing. Dash-dotted lines represent upper and lower bounds for the bag concentration
as well as for the observable blood-bag ratio. These bounds were obtained by assuming that the airway
temperature either instantaneously rises to body core temperature or remains constant during the individual
rebreathing periods.
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Here, the initial bag concentration at the onset of each individual rebreathing cy-
cle is determined by the final bag concentration after the preceding rebreathing cycle,
i.e., no fresh room air enters the bag according to the experimental protocol described
in [29]. The bag concentration profile in Fig. 3 qualitatively resembles the data pre-
sented by O’Hara et al.. However, what emerges from this modeling-based analysis
is that in spite of steadily increasing bag concentrations (finally reaching a plateau
level), the latter might not necessarily approach the underlying alveolar concentra-
tion as in the case of single cycle rebreathing. The major reason for this is a lack of
thermal and diffusional equilibration between airways and alveolar region within the
individual rebreathing segments. One potential way to circumvent this issue would
be to reduce the desaturation and cooling of the airway tissues between consecutive
rebreathing segments by keeping the intermediate time interval of free tidal breathing
as short as possible (while simultaneously maintaining a regime allowing comfortable
breathing).

The second panel in Fig. 3 displays the evolution of the predicted blood-bag con-
centration ratios during the course of experimentation. Note that the in vitro blood:gas
partition coefficient λb:air = 340 is never attained. This observation can offer some
explanation for the discrepancies that continue to exist with regard to theoretical and
experimentally measured ratios between blood and (rebreathed) breath levels [28].
As can be deduced from Fig. 3, the final plateau value and the observable BBR of
acetone will vary with temperature according to Equation (6), which is consistent
with similar observations made in the case of breath ethanol measurements [30].

4 Discussion

Here we have successfully applied a previously published compartment model for the
exhalation kinetics of highly soluble, blood-borne VOCs to the experimental frame-
work of isothermal rebreathing. The proposed model has proven sufficiently flexi-
ble for capturing the associated end-tidal breath dynamics of acetone, which can be
viewed as a prototypical test compound within this context. Data are presented for one
single representative subject only, inasmuch as our main emphasis was on describing
the fundamental features of observable VOC behavior within the above-mentioned
experimental regime. Some important practical implications emerge from this analy-
sis. Firstly, it is demonstrated that the classical Farhi setting will fail to reproduce the
experimentally measured data if a constant endogenous production and metabolism
rate is postulated. This is due to the fact that airway gas exchange, being a major
determinant affecting breath concentration profiles during isothermal rebreathing, is
not taken into account within this formalism.
From an operational point of view our data indicate that even if isothermal rebreath-
ing is carried out until the individual breathing limit is reached, a steady state accord-
ing to Equation (9) might not necessarily be attained for highly soluble blood-borne
VOCs. In particular, it has been shown in the case of acetone that end-exhaled breath
(or bag) concentrations extracted after about 0.5 min of rebreathing (corresponding to
the common protocol of providing around five consecutive rebreaths) are still likely
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to underestimate the underlying alveolar level, similarly to end-exhaled levels during
free tidal breathing.

While the alveolar concentration might be extrapolated to some extent from par-
tially rebreathed breath volumes by employing parameter estimation procedures as
outlined above, adequate rebreathing setups allowing for longer and more tolerable
experiments will necessarily hinge on the continuous removal of CO2 and on the re-
placement of metabolically consumed oxygen (see also closed chamber techniques
as discussed in [9]). The influence of chemical binding agents for CO2 (e.g., “soda
lime”) used for this purpose on the measured breath and bag concentrations remains
to be settled. Furthermore, we stress the fact that systemic blood levels themselves
will change in the course of rebreathing due to feedback from the body tissues. While
this is not expected to be a major issue for rebreathing periods less than one minute
(taking into account the tissue-lung transport delays of the systemic circulation), one
has to bear in mind that the alveolar concentration extracted from a fully equilibrated
rebreathing sample will generally reflect a mixed venous concentration that is dis-
tinct from the steady state level during free breathing. The associated deviation will
depend on substance-specific distribution processes within the body. For perspective,
these dynamics might also be exploited for extracting metabolic parameters of VOCs
on the basis of rebreathing experiments carried out over longer time spans (e.g., sev-
eral hours, cf. [10]).
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A Model equations

This appendix serves to give a roughly self-contained outline of the model structure sketched in Fig. 1.
Model equations are derived by taking into account standard conservation of mass laws for the individual
compartments. Local diffusion equilibria are assumed to hold at the air-tissue, tissue-blood and air-blood
interfaces, the ratio of the corresponding concentrations being described by the appropriate partition coef-
ficients λ , e.g., λb:air. Unlike for low blood soluble compounds, the amount of highly soluble gas dissolved
in the local blood volume of perfused compartments cannot generally be neglected, as it might significantly
increase the corresponding capacities. This is particularly true for the airspace compartments. We hence use
the effective compartment volumes Ṽbro := Vbro +Vmucλmuc:air, ṼA := VA +Vc′λb:air, Ṽliv := Vliv +Vliv,bλb:liv
as well as Ṽtis := Vtis and neglect blood volumes only for the mucosal and tissue compartment.

According to Fig. 1 for the bronchial compartment we find that

dCbro

dt
Ṽbro = V̇A(CI−Cbro)+D(CA−Cbro)+qbroQ̇c

(
Ca− λmuc:air

λmuc:b
Cbro

)
, (13)

with CI denoting the inhaled (ambient) gas concentration, while the mass balance equations for the alveolar,
liver and tissue compartment read

dCA

dt
ṼA = D(Cbro−CA)+(1−qbro)Q̇c

(
Cv̄−λb:airCA

)
, (14)
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and
dCliv

dt
Ṽliv = kpr− kmetλb:livCliv +qliv(1−qbro)Q̇c

(
Ca−λb:livCliv

)
, (15)

and
dCtis

dt
Ṽtis = (1−qliv)(1−qbro)Q̇c

(
Ca−λb:tisCtis

)
, (16)

respectively. Here,
Cv̄ := qlivλb:livCliv +(1−qliv)λb:tisCtis (17)

and
Ca := (1−qbro)λb:airCA +qbroλmuc:airCbro/λmuc:b (18)

are the associated concentrations in mixed venous and arterial blood, respectively. Values for the individ-
ual compartment volumes and the temperature-dependent partition coefficients are assumed to be known
(see Table 3), while cardiac output Q̇c, fractional blood flow qliv(Q̇c) to the liver (as an empirical function
of Q̇c, cf. [21]) and alveolar ventilation V̇A are accessed by direct measurement, see Section 2.1. Within
the context of rebreathing experiments, the effective bronchial fractional blood flow qbro is postulated to
be represented by a constant nominal value qrest

bro , which generally has to be estimated from experimental
data. The same holds true for the initial conditions c0 = (Cbro(0),CA(0),Cliv(0),Ctis(0)) as well as for the
(constant) production and linear metabolism rates kpr and kmet, respectively.

Table 3 Basic model parameters and nominal values during rest. LBV denotes the lean body volume in
liters calculated according to LBV =−16.24+0.22bh+0.42bw, with body height (bh) and weight (bw)
given in cm and kg, respectively [27].

Parameter Symbol Nominal value (units)

Compartment volumes

bronchioles Vbro 0.1 (l) [27]
mucosa Vmuc 0.005 (l) [27]
alveoli VA 4.1 (l) [27]
end-capillary Vc′ 0.15 (l) [15]
liver Vliv 0.0285 LBV (l) [27]
blood liver Vliv,b 1.1 (l) [31]
tissue Vtis 0.7036 LBV (l) [27]

Fractional blood flows

fractional flow bronchioles qbro 0.01 [24]
fractional flow liver qliv 0.32 [27]

Partition coefficients at body temperature

blood:air λb:air 340 [5,6]
mucosa:air λmuc:air 392 [35,22]
blood:liver λb:liv 1.73 [22]
blood:tissue λb:tis 1.38 [5]

Metabolic and diffusion constants

linear metabolic rate kmet 0.0074 (l/kg0.75/min) [21]
endogenous production kpr 0.19 (mg/min) [21]
stratified conductance D 0 (l/min) [21]
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