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Chapter 0

Introduction

One of the most famous examples of nonlinear wave equations is the Korteweg–
de Vries (KdV) equation

qt(x, t) = 6q(x, t)qx(x, t)− qxxx(x, t). (0.1)

(x, t) ∈ R × R. Here the subscripts denote the differentiation with respect
to the corresponding variables. We will consider real-valued solutions q(x, t)
corresponding to rapidly decaying initial conditions, for example,

q(x, 0) ∈ S(R) = {f ∈ C∞(R)| sup
x
|xα(∂βf)(x)| <∞, α, β ∈ N0}. (0.2)

The KdV equation occurs in the context of models for small amplitudes, long
(water) waves, collision-free hydromagnetic waves and ion-acoustic waves in
plasmas.

It is well-known that the KdV equation can be solved by the inverse scat-
tering method applied to the associated Schrödinger operator

H(t) = − d2

dx2
+ q(x, t). (0.3)

The scattering data (see e.g. [7], [15]) consists of the reflection coefficient R(k, t),
a finite number of eigenvalues −κ2

j with 0 < κ1 < κ2 < · · · < κN and norming
constants γj(t).

The aim of my diploma thesis is to compute the long-time asymptotics for
the KdV equation in the soliton and the similarity region. Our approach is
based on the nonlinear steepest descent method for oscillatory Riemann–Hilbert
problems from Deift and Zhou [9]. We closely follow the recent review article
[13], where Krüger and Teschl applied this method to compute the long-time
asymptotics for the Toda lattice. One of the many differences here is the fact
that the jump contour of the associated Riemann–Hilbert problem is no longer
bounded.

For computing the long-time behavior of the KdV equation there are four
cases to distinguish.

(i) Soliton Region:
For x/t > C for some C > 0,

q(x, t) ∼ −2
N∑
j=1

κ2
j

cosh2(κjx− 4κ3
j t− pj)

, (0.4)
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Chapter 0. Introduction

where the phase shifts pj = 1
2 log[ γ

2
j

2κj

N∏
l=j+1

(
κl−κj
κl+κj

)2

] and γj = γj(0)

This result, which will be proven in Theorem 3.5, has an interesting phys-
ical interpretation:
In general every term in our asymptotic formula describes a wave. Con-
sidering only two of them, with the smaller one to the right, after a certain
time the waves will overlap (i.e. the bigger one catches up) and next the
bigger one will separate from the smaller one. Then gradually the waves
regain their initial speed and shape. The only permanent effect of this
interaction is that the bigger one is shifted to the right and the smaller
one to the left.
A proof using inverse scattering based on the Gel’fand-Levitan-Marchenko
equation can be found in Eckhaus and Schuur [11] (see also [18]).

(ii) Self-Similar Region:∣∣x/(3t)1/3
∣∣ ≤ C for some C > 0

The solution in this region is connected with the Painléve II transcendent.
The investigation of this connection can be found in Segur and Ablowitz
[19].

(iii) Collisionless Shock Region:
x < 0 and for C−1 < −x

(3t)1/3(log(t))2/3 < C, for some C > 1
This region only occurs in the generic case (i.e., when R(0) = −1) and the
long-time asymptotic is investigated in Deift, Venakides and Zhou [8].

(iv) Similarity Region:
For x/t < −C for some C > 0,

q(x, t) ∼
(

4ν(k0)k0

3t

)1/2

sin(16tk3
0 − ν(k0) log(192tk3

0) + δ(k0)), (0.5)

with

ν(k0) =− 1
2π

log(1− |R(k0)|2),

δ(k0) =
π

4
− arg(R(k0)) + arg(Γ(iν(k0))) + 4

N∑
j=1

arctan
(κj
k0

)
+

1
π

∫ k0

−k0

log(|ζ − k0|)d log(1− |R(ζ)|2).

Here k0 =
√
− x

12t denotes the stationary phase point, R(k) = R(k, t = 0)
the reflection coefficient, and Γ the Gamma function.
This will be proven in Theorem 4.3.
An analytic discussion can be found in Ablowitz and Segur [1] and in
Buslaev and Sukhanov [4].

Note that if q(x, t) solves the KdV equation, then so does q(−x,−t). There-
fore it suffices to investigate the case t→∞.

The content of this thesis is as follows:
In Chapter 1 we derive the Riemann–Hilbert problem from scattering theory,

where the eigenvalues are added by appropriate pole conditions, which are then
turned into jumps.

iii



Chapter 0. Introduction

Chapter 2 proves a uniqueness result for symmetric Riemann–Hilbert prob-
lems. In general, there is a well-known non-uniqueness issue for the involved
Riemann–Hilbert problems (see e.g. [3, Chap. 38]).

Chapter 3 demonstrates how to conjugate our Riemann–Hilbert problem and
deform our contour such that the jumps are exponentially decreasing away from
the stationary phase points. Moreover, the asymptotics in the soliton region are
computed.

In Chapter 4 we compute the asymptotics in the similarity region. The
crucial step is to reduce the given Riemann–Hilbert problem to one or more
Riemann–Hilbert problems localized at the stationary phase points. These local
Riemann–Hilbert problems can be analyzed and controlled individually.

In Chapter 5 we consider the case where the reflection coefficient has no
analytic extension to a neighborhood of the real axis and so we show how to
split it in an analytic part plus a small rest.

Appendix A investigates the solution on a small cross, which occurs in the
neighborhood of the stationary phase points.

In Appendix B we have a close look at the connection between singular inte-
gral equations and Riemann–Hilbert problems, which is needed for computing
the asymptotics.

Thanks

I wish to thank my advisor Gerald Teschl for all the support I had, when writing
this thesis, and my friends and colleagues Ira Egorova, Alice Mikikits-Leitner
and Helge Krüger for many discussions and proof reading.

This work was supported by the Austrian Science Fund (FWF) under Grant
No. Y330 and the Faculty of Mathematics of the University of Vienna which
provided me with excellent working conditions.

Errata

This version differs a bit from the one, I submitted as my diploma thesis, since
I have corrected some small mistakes.
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Chapter 1

The Inverse scattering
transform and the
Riemann–Hilbert problem

In this chapter we want to derive the Riemann–Hilbert problem from scattering
theory. The eigenvalues will be added by appropriate pole conditions which are
then turned into jumps following Deift, Kamvissis, Kriecherbauer, and Zhou [6]
in the case of the Toda lattice (see also Krüger and Teschl [14]).

1.1 Results from scattering theory

For the necessary results from scattering theory respectively the inverse scat-
tering transform for the KdV equation we refer to [7] and [15].

We consider real-valued solutions q(x, t) of the KdV equation (0.1), which
decay rapidly, that is

max
|t|≤T

∫
R

(1 + |x|) |q(x, t)| dx <∞, for all T > 0, (1.1)

for q together with its first three derivatives qx, qxx, and qxxx with respect to x.
For existence of solutions with such initial data we refer to Section 4.2 in [15].

Associated with the KdV equation is the following Lax-pair:

L(t) = −∂2
x + q(., t), (1.2)

P (t) = −4∂3
x + 6q(., t)∂x + 3qx(., t), (1.3)

and
d

dt
L(t) = [P (t), L(t)] = P (t)L(t)− L(t)P (t) on H5(R),

which is equivalent to the KdV equation. Moreover, P (t) is skew adjoint with
D(P (t)) = H3(R). We are more interested in the self-adjoint Schrödinger oper-
ator

L(t) = H(t) = − d2

dx2
+ q(., t), D(H) = H2(R) ⊂ L2(R). (1.4)

1



Chapter 1. Scattering theory and the Riemann-Hilbert problem

L2(R) denotes the Hilbert space of square integrable (complex-valued) functions
over R. By our assumption (1.1) the spectrum of H consists of an absolutely
continuous part [0,∞) plus a finite number of eigenvalues −κ2

j ∈ (−∞, 0], 1 ≤
j ≤ N . In addition, there exist two Jost solutions ψ±(k, x, t), which solve the
differential equation

H(t)ψ±(k, x, t) = k2ψ±(k, x, t), Im(k) > 0, (1.5)

and asymptotically look like the free solutions

lim
x→±∞

e∓ikxψ±(k, x, t) = 1. (1.6)

Both ψ±(k, x, t) are analytic for Im(k) > 0 and continuous for Im(k) ≥ 0.

Theorem 1.1. The asymptotics of the two Jost solutions are given by

ψ±(k, x, t) = e±ikx
(

1 +Q±(x, t)
1

2ik
+O

( 1
k2

))
, (1.7)

as k →∞ with Im(k) ≥ 0, where

Q+(x, t) = −
∫ ∞
x

q(y, t)dy, Q−(x, t) = −
∫ x

−∞
q(y, t)dy. (1.8)

Proof. The Jost solutions ψ±(k, x, t) are the unique solutions of the following
integral equation for all k with Im(k) ≥ 0

ψ±(k, x, t) = e±ikx −
∫ ±∞
x

sin(k(x− y))
k

q(y, t)ψ±(k, y, t)dy. (1.9)

We furthermore know that limx→±∞ e∓ikxψ±(k, x, t) = 1 + O(k−1). We will
proof the asymptotic only for ψ+(k, x, t):

e−ikxψ+(k, x, t)

= 1 +
∫ ∞
x

e2ik(y−x) − 1
2ik

q(y, t)e−ikyψ+(k, y, t)dy

= 1 +
∫ ∞
x

e2ik(y−x) − 1
2ik

q(y, t)dy +O

(
1
k

)∫ ∞
x

e2ik(x−y) − 1
2ik

q(y, t)dy

= 1− 1
2ik

∫ ∞
x

q(y, t)dy +
∫ ∞
x

e2ik(y−x)

2ik
q(y, t)dy +O

(
1
k2

)
= 1− 1

2ik

∫ ∞
x

q(y, t)dy +O

(
1
k2

)
as k →∞. For the first equality we used sin(k) = eik−e−ik

2i .

Considering the Wronskian W (ψ±, ψ±) = ψ±ψ
′
± − ψ±

′
ψ±, where ′ denotes

the derivation with respect to x, we see that it is independent of x and t along the
real axis. Thus we can compute W (ψ±, ψ±)(k) = ±2ik, which shows that these
two functions are linearly independent, but the Schrödinger equation can have
at most two linearly independent solutions, which in our case are represented

2



Chapter 1. Scattering theory and the Riemann-Hilbert problem

by ψ+ and ψ−. Therefore we can write ψ± as a linear combination of the given
Jost solutions. In particular, one has the scattering relations

T (k)ψ∓(k, x, t) = ψ±(k, x, t) +R±(k, t)ψ±(k, x, t), k ∈ R, (1.10)

where T (k), R±(k, t) are the transmission respectively reflection coefficients.
The transmission and reflection coefficients have the following well-known prop-
erties:

Lemma 1.2. The transmission coefficient T (k) is meromorphic for Im(k) > 0
with simple poles at iκ1, . . . , iκN and is continuous up to the real line. The
residues of T (k) are given by

Resiκj T (k) = iµj(t)γ+,j(t)2 = iµjγ2
+,j , (1.11)

where
γ+,j(t)−1 = ‖ψ+(iκj , ., t)‖2 (1.12)

and ψ+(iκj , x, t) = µj(t)ψ−(iκj , x, t).
Moreover,

T (k)R+(k, t) + T (k)R−(k, t) = 0, |T (k)|2 + |R±(k, t)|2 = 1. (1.13)

The functions q(x, t), x ∈ R for fixed t ∈ R are uniquely determined by their
right scattering data, that is, by the right reflection coefficient R+(k, t), k ∈ R
and the eigenvalues κj ∈ (0,∞), j = 1, . . . , N , together with the corresponding
norming constants γ+,j(t) > 0, j = 1, . . . , N . So in particular, one reflection
coefficient, say R(k, t) = R+(k, t), and one set of norming constants, say γj(t) =
γ+,j(t), suffices. Moreover, the time dependence is given by:

Lemma 1.3. The time evolutions of the quantities R+(k, t), T (k, t) and γ+,j(t)
are given by

R(k, t) = R(k)e8ik3t, (1.14)

γj(t) = γje4κ3
j t, (1.15)

T (k, t) = T (k), (1.16)

where R(k) = R(k, 0), T (k) = T (k, 0) and γj = γj(0).

1.2 The Riemann-Hilbert problem for the KdV
equation

We will define a Riemann–Hilbert problem as follows:

m(k, x, t) =
{ (

T (k)ψ−(k, x, t)eikx ψ+(k, x, t)e−ikx
)
, Im(k) > 0,(

ψ+(−k, x, t)eikx T (−k)ψ−(−k, x, t)e−ikx
)
, Im(k) < 0.

(1.17)
We are interested in the jump condition of m(k, x, t) on the real axis R

(oriented from negative to positive). To formulate our jump condition we use
the following convention: When representing functions on R, the lower subscript
denotes the non-tangential limit from different sides. By m+(k) we denote the
limit from above and by m−(k) the one from below. Using the notation above
implicitly assumes that these limits exist in the sense that m(k) extends to a
continuous function on the real axis away from 0.

3



Chapter 1. Scattering theory and the Riemann-Hilbert problem

Theorem 1.4 (Vector Riemann–Hilbert problem). Let S+(H(0)) = {R(k), k ≥
0; (κj , γj), 1 ≤ j ≤ N} the right scattering data of the operator H(0). Then
m(k) = m(k, x, t) defined in (1.17) is meromorphic away from the real axis with
simple poles at iκj, −iκj and satisfies:

(i) The jump condition

m+(k) = m−(k)v(k), v(k) =
(

1− |R(k)|2 −R(k)e−tΦ(k)

R(k)etΦ(k) 1

)
, (1.18)

for k ∈ R,

(ii) the pole conditions

Resiκj m(k) = lim
k→iκj

m(k)
(

0 0
iγ2
j etΦ(iκj) 0

)
,

Res−iκj m(k) = lim
k→−iκj

m(k)
(

0 −iγ2
j etΦ(iκj)

0 0

)
,

(1.19)

(iii) the symmetry condition

m(−k) = m(k)
(

0 1
1 0

)
, (1.20)

(iv) and the normalization

lim
κ→∞

m(iκ) = (1 1). (1.21)

Here the phase is given by

Φ(k) = 8ik3 + 2ik
x

t
. (1.22)

Proof. (i) For the proof of the jump condition we need the scattering relations
(1.10) and (1.13).

v(k)−1 =
(

1 R(k)e−tΦ(k)

−R(k)etΦ(k) 1− |R(k)|2
)

(1.23)

and so we can also show m+(k)v(k)−1 = m−(k).

T (k)ψ−(k, x, t)eikx −R(k)etΦ(k)ψ+(k, x, t)e−ikx

= T (k)ψ−(k, x, t)eikx −R(k, t)eikxψ+(k, x, t)

= ψ+(k, x, t)eikx = ψ+(−k, x, t)eikx,

hence we have proven the jump condition for the first component ofm−(k).
For the second component of m−(k) we compute

T (k)ψ−(k, x, t)eikxR(k)e−tΦ(k) + (1− |R(k)|2)ψ+(k, x, t)e−ikx

= T (k)ψ−(k, x, t)e−ikxR(k, t) + |T (k)|2 ψ+(k, x, t)e−ikx

= ψ+(k, x, t)e−ikxR(k, t) + |R(k, t)|2 e−ikxψ+(k, x, t) + |T (k)|2 e−ikxψ+(k, x, t)

= ψ+(k, x, t)R(k, t)e−ikx + ψ+(k, x, t)e−ikx

= T (k)ψ−(k, x, t)e−ikx = T (−k)ψ−(−k, x, t)e−ikx.

4



Chapter 1. Scattering theory and the Riemann-Hilbert problem

(ii) First of all note that the Jost solutions ψ±(k, x, t) are analytic for Im(k) >
0 and that the transmission coefficient T (k) has only simple poles at iκj .
Hence Resiκj m2(k) = 0 and Res−iκj m1(k) = 0. Moreover

Resiκj m1(k) = Resiκj T (k)ψ−(iκj , x, t)e−κjx

= iµj(t)γj(t)2ψ−(iκj , x, t)e−κjx

= iγj(t)2ψ+(iκj , x, t)e−κjx

= iγ2
j etΦ(iκj)ψ+(iκj , x, t)eκjx.

Similarly Res−iκj m2(k) can be computed. Here ml(k) denotes the l’th
component of m(k).

(iii) The symmetry condition is obvious from the construction of our function
m(k, x, t).

(iv) The normalization follows immediately from the next Lemma

Remark 1.5. Observe that the pole condition at iκj is sufficient since the one
at −iκj follows by symmetry as the following calculation shows

Res−iκj m(k) = lim
k→−iκj

(k + iκj)m(k)

= − lim
k→iκj

(k − iκj)m(k)
(

0 1
1 0

)
= − lim

k→iκj
m(k)

(
0 0

iγ2
j etΦ(iκj) 0

)(
0 1
1 0

)
= − lim

k→iκj
m(−k)

(
0 1
1 0

)(
0 0

iγ2
j etΦ(iκj) 0

)(
0 1
1 0

)
= lim
k→−iκj

m(k)
(

0 −iγ2
j etΦ(iκj)

0 0

)
.

Moreover, we have the following asymptotic behavior as k →∞ with Im(k) ≥
0:

Lemma 1.6. The function m(k, x, t) defined in (1.17) satisfies

m(k, x, t) =
(
1 1

)
+Q(x, t)

1
2ik

(
−1 1

)
+O

(
1
k2

)
. (1.24)

Here Q(x, t) = Q+(x, t) is defined in (1.8).

Proof. This follows from (1.7) and T (k)ψ−(k, x, t)ψ+(k, x, t) = 1+ q(x,t)
2k2 +O( 1

k4 ).
For details we refer to [12].

For our further analysis it will be convenient to rewrite the pole condition as
a jump condition and hence turn our meromorphic Riemann–Hilbert problem
into a holomorphic Riemann–Hilbert problem following [6]. Choose ε so small

5



Chapter 1. Scattering theory and the Riemann-Hilbert problem

that the discs |k − iκj | < ε lie inside the upper half plane and do not intersect.
Then redefine m(k) in a neighborhood of iκj respectively −iκj according to

m(k) =



m(k)

(
1 0

− iγ2
j etΦ(iκj)

k−iκj
1

)
, |k − iκj | < ε,

m(k)

(
1 iγ2

j etΦ(iκj)

k+iκj

0 1

)
, |k + iκj | < ε,

m(k), else.

(1.25)

Note that for Im(k) < 0 we redefined m(k) with respect to our symmetry (1.20).
Then a straightforward calculation using Resiκm(k) = limk→iκ(k − iκ)m(k)
shows:

Lemma 1.7. Suppose m(k) is redefined as in (1.25). Then m(k) is holomorphic
away from the real axis and the small circles around iκj and −iκj. Furthermore
it satisfies (1.18), (1.20), (1.21) and the pole condition is replaced by the jump
condition

m+(k) = m−(k)

(
1 0

− iγ2
j etΦ(iκj)

k−iκj
1

)
, |k − iκj | = ε,

m+(k) = m−(k)

(
1 − iγ2

j etΦ(iκj)

k+iκj

0 1

)
, |k + iκj | = ε,

(1.26)

where the small circle around iκj is oriented counterclockwise and the one around
−iκj clockwise.

Proof. (1.18),(1.20), and (1.21) still hold, because m(k) is only redefined with
respect to our symmetry condition on the small circles around iκj , 1 ≤ j ≤ N . A
simple calculation inserting the definition of the new m(k) and using the former
pole condition shows that the pole condition is replaced by the jump condition
(1.26).

Next we turn to uniqueness of the solution of this vector Riemann–Hilbert
problem. This will also explain the reason for our symmetry condition. We
begin by observing that if there is a point k1 ∈ C, such that m(k1) =

(
0 0

)
,

then n(k) = 1
k−k1

m(k) satisfies the same jump and pole conditions as m(k).
However, it will clearly violate the symmetry condition! Hence, without the
symmetry condition, the solution of our vector Riemann–Hilbert problem will
not be unique in such a situation. Moreover, a look at the one soliton solution
verifies that this case indeed can happen.

Lemma 1.8 (One soliton solution). Suppose there is only one eigenvalue and
that the reflection coefficient vanishes, that is, S+(H(t)) = {R(k, t) ≡ 0, k ∈
R; (κ, γ(t)), κ > 0, γ > 0}. Then the unique solution of the Riemann–Hilbert
problem (1.18)–(1.21) is given by

m0(k) =
(
f(k) f(−k)

)
(1.27)

f(k) =
1

1 + (2κ)−1γ2etΦ(iκ)

(
1 +

k + iκ
k − iκ

(2κ)−1γ2etΦ(iκ)

)
.

6



Chapter 1. Scattering theory and the Riemann-Hilbert problem

In particular,

Q+(x, t) =
2γ2etΦ(iκ)

1 + (2κ)−1γ2etΦ(iκ)
. (1.28)

Proof. By assumption the reflection coefficient vanishes and so the jump along
the real axis disappears. Therefore and by the symmetry condition, we know
that the solution is of the form m0(k) =

(
f(k) f(−k)

)
, where f(k) is mero-

morphic. Furthermore the function f(k) has only a simple pole at iκ, so that
we can make the ansatz f(k) = C + D k+iκ

k−iκ . Then the constants C and D are
uniquely determined by the pole conditions and the normalization.

In fact, observe f(k1) = f(−k1) = 0 if and only if k1 = 0 and 2κ = γ2etΦ(iκ).
Furthermore, even in the general case m(k1) =

(
0 0

)
can only occur at k1 = 0

as the following lemma shows.

Lemma 1.9. If m(k1) =
(
0 0

)
for m defined as in (1.17), then k1 = 0.

Moreover, the zero of at least one component is simple in this case.

Proof. By (1.17) the condition m(k1) =
(
0 0

)
implies that the Jost solutions

ψ−(k, x) and ψ+(k, x) are linearly dependent or that the transmission coefficient
T (k1) = 0. This can only happen, at the band edge, k1 = 0 or at an eigenvalue
k1 = iκj .

We begin with the case k1 = iκj . In this case the derivative of the Wronskian
W (k) = (ψ+(k, x)ψ′−(k, x) − ψ′+(k, x)ψ−(k, x)) does not vanish by the well-
known formula d

dkW (k)|k=k1 = −2k1

∫
R ψ+(k1, x)ψ−(k1, x)dx 6= 0. Moreover,

the diagonal Green’s function g(z, x) = W (k)−1ψ+(k, x)ψ−(k, x) is Herglotz as
a function of z = −k2 and hence can have at most a simple zero at z = −k2

1.
Since z → −k2 is conformal away from z = 0 the same is true as a function of
k. Hence, if ψ+(iκj , x) = ψ−(iκj , x) = 0, both can have at most a simple zero
at k = iκj . But T (k) has a simple pole at iκj and hence T (k)ψ−(k, x) cannot
vanish at k = iκj , a contradiction.

It remains to show that one zero is simple in the case k1 = 0. In fact, one
can show that d

dkW (k)|k=k1 6= 0 in this case as follows: First of all note that
ψ̇±(k) (where the dot denotes the derivative with respect to k) again solves
Hψ̇±(k1) = −k2

1ψ̇±(k1) if k1 = 0. Moreover, by W (k1) = 0 we have ψ+(k1) =
c ψ−(k1) for some constant c (independent of x). Thus we can compute

Ẇ (k1) = W (ψ̇+(k1), ψ−(k1)) +W (ψ+(k1), ψ̇−(k1))

= c−1W (ψ̇+(k1), ψ+(k1)) + cW (ψ−(k1), ψ̇−(k1))

by letting x → +∞ for the first and x → −∞ for the second Wronskian (in
which case we can replace ψ±(k) by e±ikx), which gives

Ẇ (k1) = −i(c+ c−1).

Hence the Wronskian has a simple zero. But if both functions had more than
simple zeros, so would the Wronskian, a contradiction.
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Chapter 2

A uniqueness result for
symmetric vector
Riemann–Hilbert problems

In this chapter we want to investigate uniqueness for the holomorphic vector
Riemann–Hilbert problem

m+(k) = m−(k)v(k), k ∈ Σ,

m(−k) = m(k)
(

0 1
1 0

)
, (2.1)

lim
κ→∞

m(iκ) =
(
1 1

)
.

Hypothesis H.2.1. Let Σ consist of a finite number of smooth oriented curves
in C such that the distance between Σ and {iy|y ≥ y0} is positive for some
y0 > 0. Assume that the contour Σ is invariant under k 7→ −k and v(k) is
symmetric

v(−k) =
(

0 1
1 0

)
v(k)−1

(
0 1
1 0

)
, k ∈ Σ. (2.2)

Moreover, suppose det(v(k)) = 1.

Now we are ready to show that the symmetry condition in fact guarantees
uniqueness.

Theorem 2.2. Suppose there exists a solution m(k) of the Riemann–Hilbert
problem (2.1) for which m(k) =

(
0 0

)
can happen at most for k = 0 in which

case lim supk→0
k

mj(k) is bounded from any direction for j = 1 or j = 2.
Then the Riemann–Hilbert problem (2.1) with norming condition replaced by

lim
κ→∞

m(iκ) =
(
α α

)
(2.3)

for given α ∈ C, has a unique solution mα(k) = αm(k).

Proof. Let mα(k) be a solution of (2.1) normalized according to (2.3). Then
we can construct a matrix valued solution via M = (m,mα) and there are two
possible cases: Either detM(k) is nonzero for some k or it vanishes identically.
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Chapter 2. A uniqueness result for symmetric Riemann–Hilbert problems

We start with the first case. By Lemma 1.7, we can rewrite all poles as
jumps with determinant one. Hence, the determinant of this modified Riemann–
Hilbert problem has no jump. Next consider a triangle, which intersects our
contour Σ. We can now apply the same method as in the proof of the Schwarz
reflection principle to conclude that the function detM(k) is holomorphic on C.
Since, it is bounded at infinity, we can apply Liouville’s theorem and hence the
determinant is constant. But taking determinants in

M(−k) = M(k)
(

0 1
1 0

)
,

gives a contradiction.
It remains to investigate the case where det(M) ≡ 0. In this case we have

mα(k) = δ(k)m(k) with a scalar function δ. Moreover, δ(k) must be holomor-
phic for k ∈ C\Σ and continuous for k ∈ Σ except possibly at the points where
m(k1) =

(
0 0

)
. Since it has no jump across Σ,

δ+(k)m+(k) = mα,+(k) = mα,−(k)v(k) = δ−(k)m−(k)v(k) = δ−(k)m+(k),

we can conclude by the same method as in the first case that it is even holo-
morphic in C\{0} with at most a simple pole at k = 0. Hence it must be of the
form

δ(k) = A+
B

k
.

Since δ has to be symmetric, δ(k) = δ(−k), we obtain B = 0. Now, by the
normalization, we obtain δ(k) = A = α. This finishes the proof.

Furthermore, the requirements cannot be relaxed to allow (e.g.) second
order zeros instead of simple zeros. In fact, if m(k) is a solution for which both
components vanish of second order at, say, k = 0, then m̃(k) = 1

k2m(k) is a
nontrivial symmetric solution of the vanishing problem (i.e. for α = 0).

By Lemma 1.9 we have

Corollary 2.3. The function m(k, x, t) defined in (1.17) is the only solution of
the vector Riemann–Hilbert problem (1.18)–(1.21).

Proof. The function m(k, x, t) defined in (1.17) satisfies the assumptions of The-
orem 2.2 and therefore, is the unique solution of our Riemann-Hilbert prob-
lem.

Observe that there is nothing special about k →∞ where we normalize, any
other point would do as well. However, observe that for the one soliton solution
(1.27), f(k) vanishes at

k = iκ
1− (2κ)2γ2etΦ(iκ)

1 + (2κ)2γ2etΦ(iκ)

and hence the Riemann–Hilbert problem normalized at this point has a non-
trivial solution for α = 0 and hence, by our uniqueness result, no solution for
α = 1. This shows that uniqueness and existence are connected, a fact which
is not surprising since our Riemann–Hilbert problem is equivalent to a singular
integral equation which is Fredholm of index zero (see Appendix B).
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Chapter 3

Conjugation and
deformation

This chapter demonstrates how to conjugate our Riemann-Hilbert problem and
how to deform our jump contour, such that the jumps will be exponentially
decreasing away from the stationary phase points. Furthermore the asymptotics
in the soliton region are computed. We will further study how poles can be dealt
with in this chapter, because solitons are represented in a Riemann-Hilbert
problem by pole conditions.

3.1 Conjugation

For easy reference we note the following result:

Lemma 3.1 (Conjugation). Assume that Σ̃ ⊆ Σ. Let D be a matrix of the
form

D(k) =
(
d(k)−1 0

0 d(k)

)
, (3.1)

where d : C\Σ̃→ C is a sectionally analytic function. Set

m̃(k) = m(k)D(k), (3.2)

then the jump matrix transforms according to

ṽ(k) = D−(k)−1v(k)D+(k). (3.3)

If d satisfies d(−k) = d(k)−1 and d(k) = 1 + O( 1
|k| ) as k → ∞. Then the

transformation m̃(k) = m(k)D(k) respects our symmetry, that is, m̃(k) satisfies
(1.20) if and only if m(k) does, and our normalization condition..

In particular, we obtain

ṽ =
(

v11 v12d
2

v21d
−2 v22

)
, k ∈ Σ\Σ̃, (3.4)

respectively

ṽ =

(
d−
d+
v11 v12d+d−

v21d
−1
+ d−1
−

d+
d−
v22

)
, k ∈ Σ ∩ Σ̃. (3.5)

10



Chapter 3. Conjugation and deformation

Proof. For k ∈ Σ we compute

m̃+(k) = m+(k)D+(k) = m−(k)v(k)D+(k) = m−(k)D−(k)D−(k)−1v(k)D+(k)
= m̃−(k)ṽ(k)

and thus ṽ(k) = D−(k)−1v(k)D+(k).
The symmetry condition follows by the next calculation

m̃(−k) = m(−k)D(k)−1 = m(k)
(

0 1
1 0

)
D(k)−1

= m(k)D(k)D(k)−1

(
0 1
1 0

)
D(k)−1 = m̃(k)

(
0 1
1 0

)
.

In order to remove the poles there are two cases to distinguish. Some jumps
are already exponentially decaying and in this case there is nothing to do.

Otherwise we use conjugation to turn the jumps into exponentially decaying
ones, again following Deift, Kamvissis, Kriecherbauer, and Zhou [6]. It turns
out that we will have to handle the poles at iκj and −iκj in one step in order
to preserve symmetry and in order to not add additional poles elsewhere.

Lemma 3.2. Assume that the Riemann–Hilbert problem for m has jump con-
ditions near iκ and −iκ given by

m+(k) = m−(k)

(
1 0

− iγ2

k−iκ 1

)
, |k − iκ| = ε,

m+(k) = m−(k)

(
1 − iγ2

k+iκ

0 1

)
, |k + iκ| = ε.

(3.6)

Then this Riemann–Hilbert problem is equivalent to a Riemann–Hilbert problem
for m̃ which has jump conditions near iκ and −iκ given by

m̃+(k) = m̃−(k)

(
1 − (k+iκ)2

iγ2(k−iκ)

0 1

)
, |k − iκ| = ε,

m̃+(k) = m̃−(k)

(
1 0

− (k−iκ)2

iγ2(k+iκ) 1

)
, |k + iκ| = ε,

and all remaining data conjugated (as in Lemma 3.1) by

D(k) =
(k−iκ
k+iκ 0

0 k+iκ
k−iκ

)
. (3.7)

Proof. To turn γ2 into γ−2, introduce D by

D(k) =



(
1 −k−iκ

iγ2

iγ2

k−iκ 0

)(
k−iκ
k+iκ 0

0 k+iκ
k−iκ

)
, |k − iκ| < ε,(

0 − iγ2

k+iκ
k+iκ
iγ2 1

)(
k−iκ
k+iκ 0

0 k+iκ
k−iκ

)
, |k + iκ| < ε,(

k−iκ
k+iκ 0

0 k+iκ
k−iκ

)
, else,

11



Chapter 3. Conjugation and deformation

and note that D(k) is analytic away from the two circles. Now set m̃(k) =
m(k)D(k). The new jump conditions can be verified with the same method as
in the previous Lemma.

3.2 The phase and the partial transmission co-
efficient

The jump along the real axis is of oscillatory type and our aim is to apply a
contour deformation such that all jumps will be moved into regions where the
oscillatory terms will decay exponentially. Since the jump matrix v contains
both exp(tΦ) and exp(−tΦ) we need to separate them in order to be able to
move them to different regions of the complex plane.

We recall that the phase of the associated Riemann–Hilbert problem is given
by

Φ(k) = 8ik3 + 2ik
x

t
(3.8)

and the stationary phase points, Φ′(k) = 0, are denoted by

k0 =
√
− x

12t
, −k0 = −

√
− x

12t
, λ0 =

x

12t
. (3.9)

For x
t > 0 we have k0 ∈ iR, and for x

t < 0 we have k0 ∈ R. For x
t > 0 we will

also need the value iκ0 ∈ iR defined via Re(Φ(iκ0)) = 0, that is,

x

t
= 4κ2

0. (3.10)

We will set κ0 = 0 if x
t < 0 for notational convenience. A simple analysis shows

that for x
t > 0 we have 0 < k0/i < κ0.

As mentioned above we will need the following factorization of the jump
condition (1.18). The correct factorization for Re(k0) < |k| is given by

v(k) = b−(k)−1b+(k), (3.11)

where

b−(k) =
(

1 R(k)e−tΦ(k)

0 1

)
, b+(k) =

(
1 0

R(k)etΦ(k) 1

)
.

For |k| < Re(k0) the factorization is given by

v(k) = B−(k)−1

(
1− |R(k)|2 0

0 1
1−|R(k)|2

)
B+(k), (3.12)

where

B−(k) =

(
1 0

−R(k)etΦ(k)

1−|R(k)|2 1

)
, B+(k) =

(
1 −R(k)e−tΦ(k)

1−|R(k)|2

0 1

)
.

To get rid of the diagonal part in the factorization corresponding to |k| <
Re(k0) and to conjugate the jumps near the eigenvalues we need the partial
transmission coefficient.
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Chapter 3. Conjugation and deformation

We define the partial transmission coefficient with respect to k0 by

T (k, k0) =
∏

κj∈(κ0,∞)

k+iκj
k−iκj

, k0 ∈ iR+,

N∏
j=1

k+iκj
k−iκj

exp

(
1

2πi

k0∫
−k0

log(|T (ζ)|2)
ζ−k dζ

)
, k0 ∈ R+

(3.13)

for k ∈ C\Σ(k0), where Σ(k0) = [−Re(k0),Re(k0)]. Note that T (k, k0) can be
computed in terms of the scattering data since |T (k)|2 = 1− |R+(k, t)|2.

Moreover, we conclude that

T (k, k0) = 1 + T1(k0)
i
k

+O

(
1
k2

)
, as k →∞

where

T1(k0) =


∑

κj∈(κ0,∞)

2κj , k0 ∈ iR+,∑
κj∈(κ0,∞)

2κj + 1
2π

∫ k0

−k0
log(|T (ζ)|2)dζ, k0 ∈ R+.

For the next theorem, we need the Plemelj formula

Theorem 3.3 (Plemelj). Let L be a simple smooth oriented arc. If ψ(t) is a
function satisfying a Hölder condition on L, then

Ψ±(t) = ±1
2
ψ(t) +

1
2πi

∫
L

ψ(τ)
τ − t

dτ , (3.14)

or, equivalently
Ψ+(t)−Ψ−(t) = ψ(t), (3.15)

Ψ+(t) + Ψ−(t) =
1
πi

∫
L

ψ(τ)
τ − t

dτ . (3.16)

Here the connection between ψ and Ψ is given by

Ψ(t) =
1

2πi

∫
L

ψ(τ)
τ − t

dτ . (3.17)

Proof. A proof can be found in Muskhelishvili [16].

Theorem 3.4. The partial transmission coefficient T (k, k0) is meromorphic in
C\Σ(k0), where Σ(k0) = [−Re(k0),Re(k0)], with simple poles at iκj and simple
zeros at −iκj for all j with κ0 < κj, and satisfies the jump condition

T+(k, k0) = T−(k, k0)(1− |R(k)|2), for k ∈ Σ(k0). (3.18)

Moreover,

(i) T (−k, k0) = T (k, k0)−1, k ∈ C\Σ(k0) and limk→∞ T (k, k0) > 0

(ii) T (k, k0) = T (k, k0)−1.

Proof. That iκj are simple poles and −iκj are simple zeros is obvious from
the Blaschke factors and that T (k, k0) has the given jump follows from Plemelj
formula. (i) and (ii) are straightforward to check.
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3.3 Deformation

Now we are ready to perform our conjugation step. Introduce

D(k) =



 1 − k−iκj

iγ2
j etΦ(iκj)

iγ2
j etΦ(iκj)

k−iκj
0

D0(k), |k − iκj | < ε, κ0 < κj , 0 − iγ2
j etΦ(iκj)

k+iκj
k+iκj

iγ2
j etΦ(iκj) 1

D0(k), |k + iκj | < ε, κ0 < κj ,

D0(k), else,

where

D0(k) =
(
T (k, k0)−1 0

0 T (k, k0)

)
.

Note that we have

D(−k) =
(

0 1
1 0

)
D(k)

(
0 1
1 0

)
.

Now we conjugate our problem using D(k) and set m̃(k) = m(k)D(k).
Then using Lemma 3.1 and Lemma 3.2 the jump corresponding to κ0 < κj

(if any) is given by

ṽ(k) =

(
1 − k−iκj

iγ2
j etΦ(iκj)T (k,k0)−2

0 1

)
, |k − iκj | = ε,

ṽ(k) =

(
1 0

− k+iκj

iγ2
j etΦ(iκj)T (k,k0)2

1

)
, |k + iκj | = ε,

(3.19)

and corresponding to κ0 > κj (if any) by

ṽ(k) =

(
1 0

− iγ2
j etΦ(iκj)T (k,k0)−2

k−iκj
1

)
, |k − iκj | = ε,

ṽ(k) =

(
1 − iγ2

j etΦ(iκj)T (k,k0)2

k+iκj

0 1

)
, |k + iκj | = ε.

(3.20)

In particular, all jumps corresponding to poles, except for possibly one if κj =
κ0, are exponentially decreasing. In this case we will keep the pole condition
which now reads

Resiκj m̃(k) = lim
k→iκj

m̃(k)
(

0 0
iγ2
j etΦ(iκj)T (iκj , k0)−2 0

)
,

Res−iκj m̃(k) = lim
k→−iκj

m̃(k)
(

0 −iγ2
j etΦ(iκj)T (iκj , k0)−2

0 0

)
.

(3.21)

Furthermore, the jump along R is given by

ṽ(k) =

{
b̃−(k)−1b̃+(k), Re(k0) < |k|,
B̃−(k)−1B̃+(k), Re(k0) > |k|,

(3.22)
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k0 ∈ iR
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Figure 3.1: Sign of Re(Φ(k)) for different values of k0

where

b̃−(k) =

(
1 R(−k)e−tΦ(k)

T (−k,k0)2

0 1

)
, b̃+(k) =

(
1 0

R(k)etΦ(k)

T (k,k0)2 1

)
, (3.23)

and

B̃−(k) =

(
1 0

−T−(k,k0)−2

1−|R(k)|2 R(k)etΦ(k) 1

)
=

(
1 0

−T−(−k,k0)
T−(k,k0) R(k)etΦ(k) 1

)
,

B̃+(k) =

(
1 −T+(k,k0)2

1−|R(k)|2R(−k)e−tΦ(k)

0 1

)
=

(
1 − T+(k,k0)

T+(−k,k0)R(−k)e−tΦ(k)

0 1

)
.

Here we have used

T±(−k, k0) = T∓(k, k0)−1, k ∈ Σ(k0)

and the jump condition for the partial transmission coefficient T (k, k0) along
Σ(k0) in the last step, which shows that the matrix entries are bounded for
k ∈ R.

Note also that we have used T (k, k0)−1 = T (k, k0) and R(−k) = R(k) for
k ∈ R to show that there exists an analytic continuation into the neighborhood
of the real axis.

Now we deform the jump along R to move the oscillatory terms into regions
where they are decaying. There are two cases to distinguish:

Case 1: k0 ∈ iR, k0 6= 0:
We set Σ± = {k ∈ C|Im(k) = ±ε} for some small ε such that Σ± lies in the

region with ±Re(k) < 0 and such that the circles around ±iκj lie outside the
region in between Σ− and Σ+. Then we can split our jump by redefining m̃(k)
according to

m̂(k) =


m̃(k)b̃+(k)−1, 0 < Im(k) < ε,

m̃(k)b̃−(k)−1, −ε < Im(k) < 0,
m̃(k), else.

(3.24)

Thus the jump along the real axis disappears and the jump along Σ± is given
by

v̂(k) =

{
b̃+(k), k ∈ Σ+

b̃−(k)−1, k ∈ Σ−.
(3.25)
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Figure 3.3: Deformed contour for k0 ∈ R+

All other jumps are unchanged. Note that the resulting Riemann-Hilbert prob-
lem still satisfies our symmetry condition (1.20), since we have

b̃±(−k) =
(

0 1
1 0

)
b̃∓(k)

(
0 1
1 0

)
. (3.26)

By construction the jump along Σ± is exponentially decreasing as t→∞.
Case 2: k0 ∈ R, k0 6= 0:
We set Σ± = Σ1

± ∪ Σ2
± according to Figure 3.3 chosen such that the circles

around ±iκj lie outside the region in between Σ− and Σ+. Again note that Σ1
±

respectively Σ2
± lie in the region with ±Re(Φ(k)) < 0. Then we can split our

jump by redefining m̃(k) according to

m̂(k) =



m̃(k)b̃+(k)−1, k between R and Σ1
+,

m̃(k)b̃−(k)−1, k between R and Σ1
−,

m̃(k)B̃+(k)−1, k between R and Σ2
+,

m̃(k)B̃−(k)−1, k between R and Σ2
−,

m̃(k), else.

(3.27)
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One checks that the jump along R disappears and the jump along Σ± is
given by

v̂(k) =


b̃+(k), k ∈ Σ1

+,

b̃−(k)−1, k ∈ Σ1
−,

B̃+(k), k ∈ Σ2
+,

B̃−(k)−1, k ∈ Σ2
−.

(3.28)

All other jumps are unchanged. Again the resulting Riemann-Hilbert prob-
lem still satisfies our symmetry condition (1.20) and the jump along Σ±\{k0,−k0}
is exponentially decreasing as t→∞

3.4 The long-time asymptotics in the soliton re-
gion

Now we are ready to state and proof one of our main results:

Theorem 3.5. Assume (1.1) and abbreviate by cj = 4κ2
j the velocity of the

j’th soliton determined by Re(Φ(iκj)) = 0. Then the asymptotics in the soliton
region, x/t ≥ C for some C > 0, are as follows:

Let ε > 0 sufficiently small such that the intervals [cj−ε, cj +ε], 1 ≤ j ≤ N ,
are disjoint and lie inside R+.

If |xt − cj | < ε for some j, one has∫ ∞
x

q(y, t)dy =
−2γ2

j (x, t)
1 + (2κj)−1γ2

j (x, t)
− 2T1(i

κj√
3

) +O(t−l),

respectively

q(x, t) =
−4κjγ2

j (x, t)
(1 + (2κj)−1γ2

j (x, t))2
+O(t−l) (3.29)

for any l ≥ 1, where

γ2
j (x, t) = γ2

j etΦ(iκj)T (iκj , i
κj√

3
)−2. (3.30)

If |xt − cj | ≥ ε, for all j, one has∫ ∞
x

q(y, t)dy = −2T1(k0) +O(t−l),

respectively

q(x, t) = O(t−l) (3.31)

for any l ≥ 1.
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Chapter 3. Conjugation and deformation

Proof. m̂ has the following asymptotic

m̂(k) = m0 +m1
1
k

+O

(
1
k2

)
=
(
T (−k, k0) T (k, k0)

)
+
(
−T (−k, k0)Q+(x, t)(2ik)−1 T (k, k0)Q+(x, t)(2ik)−1

)
+O

(
1
k2

)
=
(
1 1

)
+
(
−1 1

) iT1(k0)
k

+
(
−1 1

) Q+(x, t)
2ik

+O

(
1
k2

)
.

Thus we have

m1 =
(
−1 1

)(
iT1(k0) +

Q+(x, t)
2i

)
. (3.32)

By construction the jump along Σ± is exponentially decreasing as t→∞. Hence
we can apply Theorem B.7 as follows:

If
∣∣x
t − cj

∣∣ > ε (resp. |κ2
0 − κ2

j |) for all j we can choose γ0 = 0 and wt0 ≡ 0
by removing all jumps corresponding to poles from wt. The error between the
solutions of wt0 and wt is exponentially small in the sense of Theorem B.7.
In particular ‖wt − wt0‖∞ ≤ O(t−l) as t → ∞ for all l ≥ 1 and ‖wt − wt0‖2 ≤
O(t−l) as t→∞ for all l ≥ 1 and so the associated Riemann-Hilbert problems
only differ by O(t−l). ¿From Lemma 1.8, we have the one soliton solution
m̂0 =

(
f̂(k) f̂(−k)

)
with f̂(k) ≡ 1 for |Im(k)| big enough and so Q+(x, t) =

+2T1(k0) +O(t−l).
If
∣∣x
t − cj

∣∣ < ε (resp. |κ2
0 − κ2

j |) for some j, we choose γt0 = γk(x, t)
and wt0 ≡ 0. As before we conclude that the error between the solutions
of wt and wt0 is exponentially small in the sense of Theorem B.7 and so the
associated solutions of the Riemann-Hilbert problems only differ by O(t−l).
¿From Lemma 1.8, we have the one soliton solution m̂0 =

(
f̂(k) f̂(−k)

)
with

f̂(k) = 1
1+(2κj)−1γ2

j (x,t)
(1 + k+iκj

k−iκj
(2κj)−1γ2

j (x, t)) for |Im(k)| big enough where

γ2
j (x, t) = γ2

j etΦ(iκj)T (iκj , i
κj√

3
)−2

and hence, plugging in the power series expansion,

Q+(x, t) = +2T1(i
κj√

3
) +

2γ2
j (x, t)

1 + (2κj)−1γ2
j (x, t)

+O(t−l). (3.33)

For the second part recall from Lemma 1.6 that

T (k)ψ+(k, x, t)ψ−(k, x, t) = 1 +
q(x, t)

2k2
+O(

1
k4

). (3.34)

In the first case
∣∣x
t − cj

∣∣ > ε for all j we know that the solution m̂(k) is of
the form

m̂(k) =
(
1 1

)
+O(t−l)

and we can therefore conclude by multiplying the two components that

q(x, t) = O(t−l). (3.35)
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Chapter 3. Conjugation and deformation

In the second case
∣∣x
t − cj

∣∣ < ε for some j we know from the first part that
the solution m̂(k) is of the form

m̂(k) =
(
f̂(k) f̂(−k)

)
+O(t−l),

where f̂(k) is defined as in the first part. Multiplying the first and the second
component and plugging in the power series expansion we get

q(x, t) =
−4κjγ2

j (x, t)
1 + (2κj)−1γ2

j (x, t)
+

2γ4
j (x, t)

(1 + (2κj)−1γ2
j (x, t))2

+O(t−l)

=
−4κjγ2

j (x, t)
(1 + (2κj)−1γ2

j (x, t))2
+O(t−l).

Corollary 3.6. Assume (1.1), then the asymptotic in the soliton region, x/t ≥
C for some C > 0, is as follows

q(x, t) =
N∑
j=1

−4κjγ2
j (x, t)

(1 + (2κj)−1γ2
j (x, t))2

+O(t−l), (3.36)

where γ2
j (x, t) = γ2

j etΦ(iκj)T (iκj , i
κj√

3
)−2.

Proof. The claim follows immediately after some easy calculations:

(i) If
∣∣x
t − cj

∣∣ < ε for some j, we can use the last theorem to obtain the
corresponding term.

(ii) If the eigenvalue κj lies in the region where Re(Φ(k)) < 0, we see that
γ2
j (x, t) is exponentially decreasing as t → ∞ and therefore the whole,

corresponding term is exponentially decreasing as t→∞.

(iii) If the eigenvalue κj lies in the region where Re(Φ(k)) > 0, we look at the
corresponding term:

−4κjγ2
j (x, t)

(1 + (2κj)−1γ2
j (x, t))2

= −
16κ3

jγ
−2
j (x, t)

(1 + (2κj)γ−2
j (x, t))2

. (3.37)

Thus these term is also exponentially decaying as t→∞, because γ−2
j (x, t)

is exponentially decreasing.

This finishes the proof.

Remark 3.7. This is exactly the same result as mentioned in the introduction
as the following calculation shows:

q(x, t) =
N∑
j=1

−4κjγ2
j (x, t)

(1 + (2κj)−1γ2
j (x, t))2

= −2
N∑
j=1

4κ2
j

e−tΦ(iκj)−2pj + etΦ(iκj)+2pj + 2

= −2
N∑
j=1

κ2
j

cosh2(κjx− 4κ3
j t− pj)

,

(3.38)
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Chapter 3. Conjugation and deformation

where we used that

T (iκj , i
κj√

3
) =

∏
κl∈(κj ,∞)

κj + κl
κj − κl

. (3.39)
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Chapter 4

The Riemann-Hilbert
problem in the similarity
region

In the previous section we have seen that for k0 ∈ R we can reduce everything
to a Riemann-Hilbert problem for m̂(k) such that the jumps are exponentially
decaying except in small neighborhoods of the stationary phase points k0 and
−k0. Hence we need to continue our investigation of this case in this chapter.

4.1 Decoupling

Denote by Σc(±k0) the parts of Σ+ ∪ Σ− inside a small neighborhood of ±k0.
We will now show that solving the two problems on the small crosses Σc(k0)
respectively Σc(−k0) will lead us to the solution of our original problem.

Theorem 4.1 (Decoupling). Consider the Riemann–Hilbert problem

m+(k) = m−(k)v(k), k ∈ Σ,

m(∞) =
(
1 1

)
,

(4.1)

and let 0 < α < β ≤ 2α, ρ(t)→∞ be given.
Suppose that for every sufficiently small ε > 0 both the L2 and the L∞ norms

of v are O(t−β) away from some ε neighborhoods of some points kj , 1 ≤ j ≤
n. Moreover, suppose that the solution of the matrix problem with jump v(k)
restricted to the ε neighborhood of kj has a solution which satisfies

Mj(k) = I +
1

ρ(t)α
Mj

k − kj
+O(ρ(t)−β), |k − kj | > ε. (4.2)

Then the solution m(k) is given by

m(k) =
(
1 1

)
+

1
ρ(t)α

(
1 1

) n∑
j=1

Mj

k − kj
+O(ρ(t)−β), (4.3)

where the error term depends on the distance of k to Σ.
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Chapter 4. The Riemann-Hilbert problem in the similarity region

Proof. In this proof we will use the theory developed in Appendix B with
m0(k) = I and the usual Cauchy kernel Ω∞(s, k) = I ds

s−k . Assume that m(k)
exists. Introduce m̃(k) by

m̃(k) =

{
m(k)Mj(k)−1, |k − kj | ≤ 2ε,
m(k), else.

(4.4)

The Riemann–Hilbert problem for m̃(k) has jumps given by

ṽ(k) =


Mj(k)−1, |k − kj | = 2ε,
Mj(k)v(k)Mj(k)−1, k ∈ Σ, ε < |k − kj | < 2ε,
I, k ∈ Σ, |k − kj | < ε,

v(k), else.

(4.5)

By assumption the jumps are I + O(ρ(t)−α) on the circles |k − kj | = 2ε and
even I +O(ρ(t)−β) on the rest (both in L2 and L∞ norms). In particular as in
Lemma A.4 we infer ∥∥µ̃− (1 1

)∥∥
2

= O(ρ(t)−α). (4.6)

Thus we can conclude

m(k) =
(
1 1

)
+

1
2πi

∫
Σ̃

µ̃(s)w̃(s)
ds

s− k

=
(
1 1

)
+

1
2πi

n∑
j=1

∫
|s−kj |=ε

µ̃(s)(Mj(s)−1 − I)
ds

s− k
+O(ρ(t)−β)

=
(
1 1

)
− ρ(t)−α

(
1 1

) 1
2πi

n∑
j=1

Mj

∫
|s−kj |=ε

1
s− kj

ds

s− k
+O(ρ(t)−β)

=
(
1 1

)
+ ρ(t)−α

(
1 1

) n∑
j=1

Mj

k − kj
+O(ρ(t)−β),

(4.7)
and hence the claim is proven.

4.2 The long-time asymptotics in the similarity
region

Now let us turn to the solution of the problem on Σc(k0) = (Σ+ ∪ Σ−) ∩
{k| |k − k0| < ε} for some small ε > 0. Since, we no longer impose the symmetry
condition, we can also deform our contour slightly such that Σc(k0) consists of
two straight lines. Next,

Φ(k0) = −16ik3
0, Φ′′(k0) = 48ik0.

As a first step we make a change of coordinates

ζ =
√

48k0(k − k0), k = k0 +
ζ√

48k0

(4.8)
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Chapter 4. The Riemann-Hilbert problem in the similarity region

such that the phase reads Φ(k) = Φ(k0) + i
2ζ

2 + O(ζ3). The corresponding
Riemann-Hilbert problem will be solved in Appendix A. To apply this result,
we will need the behavior of our jump matrix near k0, that is, the behavior of
T (k, k0) near k0.

Lemma 4.2. Let k0 ∈ R, then

T (k, k0) =
(
k − k0

k + k0

)iν

T̃ (k, k0), (4.9)

where ν = − 1
π log(|T (k0)|) and the branch cut of the logarithm is chosen along

the negative real axis. Here

T̃ (k, k0) =
N∏
j=1

k + iκj
k − iκj

exp

 1
2πi

k0∫
−k0

log

(
|T (ζ)|2

|T (k0)|2

)
1

ζ − k
dζ

 (4.10)

is Hölder continuous of any exponent less then 1 at the stationary phase point
k = k0 and satisfies T̃ (k0, k0) ∈ T.

Proof. First of all note that

exp

(
1

2πi

∫ k0

−k0

log(|T (k0)|2)
1

ζ − k
dζ

)
=
(
k − k0

k + k0

)iν

. (4.11)

Moreover we know from Theorem 3.4∣∣∣T̃ (k, k0)
∣∣∣ = T̃ (k, k0)T̃ (k, k0) = T̃ (k, k0)−1T̃ (k, k0) = T̃ (−k, k0)T̃ (k, k0) (4.12)

for k ∈ C\Σ(k0). Furthermore the Blaschke products
∏N
j=1

k+iκj
k−iκj

are continuous
for k 6= iκj , j = 1, . . . , N and

1
2πi

∫ k0

−k0

log

(
|T (ζ)|2

|T (k0)|2

)
1

ζ − k
dζ +

1
2πi

∫ k0

−k0

log

(
|T (ζ)|2

|T (k0)|2

)
1

ζ + k
dζ

=
k − k
2πi

∫ k0

k0

log

(
|T (ζ)|2

|T (k0)|2

)
1

|ζ − k|2
dζ,

which tends to 0 as k → k0 with k ∈ C\Σ(k0). Hence
∣∣∣T̃ (k, k0)

∣∣∣→ 1 as k → k0

and so T̃ (k, k0) ∈ T.
For the proof of the Hölder continuity of any exponent less than 1 at k = k0,

we refer to Muskhelishvili [16].

If k(ζ) is defined as in (4.8) and 0 < α < 1, then there is an L > 0 such that∣∣∣T (k(ζ), k0)− ζ iν T̃ (k0, k0)e−iν log(2k0
√

48k0)
∣∣∣ ≤ L |ζ|α , (4.13)

where the branch cut of ζ iν is the negative real axis. Here we used the following
observations:
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(i) (
k − k0

k + k0

)iν

= ζ iν

(
1

2k0

√
48k0 + ζ

)iν

= ζ iνF (ζ, k0). (4.14)

This function F (ζ, k0) is Hölder continuous of any exponent less than 1 at
ζ = 0.

(ii) With the same idea as for differentiable functions at ζ = 0, we can show
that the product of two Hölder continuous functions is again Hölder con-
tinuous.

We also have
|R(k(ζ))−R(k0)| ≤ L |ζ|α (4.15)

and thus the assumptions of Theorem A.1 are satisfied with

r = R(k0)T̃ (k0, k0)−2e2iν log(2k0
√

48k0). (4.16)

Therefore we can conclude that the solution on Σc(k0) is given by

M c
1 (k) = I +

1
ζ

i
t1/2

(
0 −β
β 0

)
+O(t−α)

= I +
1√

48k0(k − k0)
i

t1/2

(
0 −β
β 0

)
+O(t−α),

(4.17)

where β is given by

β =
√
νei(π/4−arg(r)+arg(Γ(iν)))e−tΦ(k0)t−iν

=
√
νei(π/4−arg(R(k0))+arg(Γ(iν)))T̃ (k0, k0)2(192k3

0)−iνe−tΦ(k0)t−iν .
(4.18)

and 1/2 < α < 1.
We also need the solution M c

2 (k) on Σc(−k0). We make the following ansatz,
which is inspired by the symmetry condition for the vector Riemann–Hilbert
problem outside the two small crosses:

M c
2 (k) =

(
0 1
1 0

)
M c

1 (−k)
(

0 1
1 0

)
. (4.19)

¿From this we conclude

M c
2 (k) = I− 1√

48k0(k + k0)
i

t1/2

(
0 β
−β 0

)
+O(t−α). (4.20)

Applying Theorem 4.1 leads to

m̂(k) =
(
1 1

)
+

1√
48k0

i
t1/2

(
1

k − k0

(
β −β

)
− 1
k + k0

(
−β β

))
+O(t−α).

(4.21)
We are now ready to state and proof our second main result:
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Theorem 4.3. Assume (1.1) with l = 5, then the asymptotics in the similarity
region, x/t ≤ −C for some C > 0, are given by∫ ∞
x

q(y, t)dy = −2T1(k0)−
√
ν√

3k0

1
t1/2

cos(16tk3
0−ν log(192tk3

0)+δ(k0))+O(t−α)

(4.22)
respectively

q(x, t) =

√
4νk0

3t
sin(16tk3

0 − ν log(192tk3
0) + δ(k0)) +O(t−α) (4.23)

for any 1/2 < α < 1. Here

ν = − 1
π

log(|T (k0)|), (4.24)

δ(k0) =
π

4
− arg(R(k0)) + arg(Γ(iν)) + 2 arg(T̃ (k0, k0)), (4.25)

T̃ (k0, k0) =
N∏
j=1

k0 + iκj
k0 − iκj

exp

 1
2πi

k0∫
−k0

log

(
|T (ζ)|2

|T (k0)|2

)
1

ζ − k0
dζ

 . (4.26)

Proof. As in the proof of the asymptotics in the soliton region we set m̂(k) =
m0 +m1

1
k +O(k−2) as k →∞ and conclude

m1 =
(
−1 1

)(
iT1(k0) +

Q+(x, t)
2i

)
. (4.27)

Therefore we compute

m̂(k)

=
(
1 1

)
+

1√
48k0

i
t1/2

(
1

k − k0

(
β −β

)
− 1
k + k0

(
−β β

))
+O(t−α)

=
(
1 1

)
+

1√
48k0

i
t1/2

1
k

( ∞∑
l=0

(
k0

k

)l (
β −β

)
−
∞∑
l=0

(
−k0

k

)l (
−β β

))
+O(t−α),

which leads to

Q+(x, t) = 2T1(k0) +
4√

48k0

1
t1/2

(Re(β)) +O(t−α), (4.28)

with

β =
√
νei(π/4−arg(R(k0))+arg(Γ(iν)))T̃ (k0, k0)2(192k3

0)−iνe−tΦ(k0)t−iν . (4.29)

Using the fact that |β/
√
ν| = 1 proves the first claim. For the second part recall

from Lemma 1.6 that

T (k)ψ+(k, x, t)ψ−(k, x, t) = 1 +
q(x, t)

2k2
+O(

1
k4

) = m̂1m̂2. (4.30)
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Plugging in the power series expansions of the components of m̂ yields

q(x, t) =

√
4k0

3t
Im(β). (4.31)

Remark 4.4. The result mentioned in the introduction is the same as the one
stated above, because

arg(T̃ (k0, k0)) = 2
N∑
j=1

arctan
(κj
k0

)
− 1

2π

∫ k0

−k0

log

(
|T (ζ)|2

|T (k0)|2

)
1

ζ − k0
dζ

and

1
π

∫ k0

−k0

log |ζ − k0| d log(1− |R(ζ)|2)

= lim
k1→k0

1
π

∫ k1

−k0

log |ζ − k0| d log(1− |R(ζ)|2

= lim
k1→k0

1
π

(
log |ζ − k0| log(1− |R(ζ)|2)|k1

−k0
−
∫ k1

−k0

1
ζ − k0

log(1− |R(ζ)|2)dζ

)

= lim
k1→k0

1
π

(
log(|R(k0)|2)

∫ k1

−k0

1
ζ − k0

dζ −
∫ k1

−k0

1
ζ − k0

log(1− |R(ζ)|2)dζ

)

= − 1
π

∫ k0

−k0

log

(
1− |R(ζ)|2

1− |R(k0)|2

)
1

ζ − k0
dζ = − 1

π

∫ k0

−k0

log

(
|T (ζ)|2

|T (k0)|2

)
1

ζ − k0
dζ.

Remark 4.5. Formally the equation (4.23) for q can be obtained by differenti-
ating the equation (4.22) for Q with respect to x. That this step is admissible
could be shown as in Deift and Zhou [10], however our approach avoids this
step.

Remark 4.6. Note that Theorem 4.1 does not require uniform boundedness of
the associated integral operator in contradistinction to Theorem B.7. We only
need the knowledge of the solution in some small neighborhoods. However it
cannot be used in the soliton region, because our solution is not of the form
I + o(1).
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Chapter 5

Analytic Approximation

In this chapter we want to present the necessary changes in the case where the
reflection coefficient does not have an analytic extension. The idea is to use
an analytic approximation and to split the reflection in an analytic part plus a
small rest. The analytic part will be moved to the complex plane while the rest
remains on the real axis. This needs to be done in such a way that the rest is
of O(t−1) and the growth of the analytic part can be controlled by the decay of
the phase.

In the soliton region a straightforward splitting based on the Fourier trans-
form

R(k) =
∫

R
eikxR̂(x)dx. (5.1)

will be sufficient.
If our solution q(x, t) is decaying rapid enough, we can conclude that R̂ ∈

L1(R) and furthermore xlR̂(−x) ∈ L1(0,∞). For details we refer to [15].

Lemma 5.1. Suppose R̂ ∈ L1(R), xlR̂(−x) ∈ L1(0,∞) and let ε, β > 0 be
given. Then we can split the reflection coefficient according to R(k) = Ra,t(k)+
Rr,t(k) such that Ra,t(k) is analytic in 0 < Im(k) < ε and

|Ra,t(k)e−βt| = O(t−l), 0 < Im(k) < ε, |Rr,t(k)| = O(t−l), k ∈ R.
(5.2)

Proof. We choose Ra,t(k) =
∫∞
−K(t)

eikxR̂(x)dx with K(t) = β0
ε t for some posi-

tive β0 < β. Then, for 0 < Im(k) < ε,

∣∣Ra,t(k)e−βt
∣∣ = e−βt|

∫ ∞
−K(t)

eikxR̂(x)dx| ≤ e−βt
∫ ∞
−K(t)

|R̂(x)|e−Im(k)xdx

≤ e−βteK(t)Im(k)‖R̂‖1 ≤ e−βteK(t)ε1‖R̂‖1
≤ ‖R̂‖1e−(β−β0)t.

Moreover, we have

‖R̂‖1 =
∫

R
|R̂(x)|dx =

∫
R
(1 + |x|)−1(1 + |x|)|R̂(x)|dx

≤ ‖(1 + |x|)−1‖2‖(1 + |x|)R̂(x)‖2 <∞,
(5.3)
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which proves the first claim. Similarly, for Im(k) = 0,

|Rr,t(k)| ≤
∫ −K(t)

−∞
|R̂(x)|dx =

∫ ∞
K(t)

xl+1|R̂(−x)|
xl+1

dx

≤

∥∥∥xlR̂(−x)
∥∥∥
L1(0,∞)

K(t)l
≤ const

tl
.

(5.4)

To apply this lemma in the soliton region k0 ∈ iR+ we choose

β = min
Im(k)=−ε

−Re(Φ(k)) > 0. (5.5)

and split R(k) = Ra,t(k) +Rr,t(k) according to Lemma 5.1 to obtain

b̃±(k) = b̃a,t,±(k)b̃r,t,±(k) = b̃r,t,±(k)b̃a,t,±(k).

Here b̃a,t,±(k), b̃r,t,±(k) denote the matrices obtained from b̃±(k) as defined in
(3.23) by replacing R(k) with Ra,t(k), Rr,t(k), respectively. Now we can move
the analytic parts into the complex plane as in Chapter 3 while leaving the rest
on the real axis. Hence, rather then (3.25), the jump now reads

v̂(k) =


b̃a,t,+(k), k ∈ Σ+,

b̃a,t,−(k)−1, k ∈ Σ−,
b̃r,t,−(k)−1b̃r,t,+(k), k ∈ R.

(5.6)

By construction we have v̂(k) = I + O(t−l) on the whole contour and the rest
follows as in Section 3.

In the similarity region not only b̃± occur as jump matrices but also B̃±.
These matrices B̃± have at first sight more complicated off diagonal entries, but
a closer look shows that they have indeed the same form. As we will rewrite
them in terms of the left rather then the right scattering data, we will use the
following notations: Rr(k) ≡ R+(k) for the right and Rl(k) ≡ R−(k) for the left
reflection coefficient. Moreover, let Tr(k, k0) ≡ T (k, k0) respectively Tl(k, k0) ≡
T (k)/T (k, k0) be the right respectively left partial transmission coefficient.

With this notation we have

ṽ(k) =

{
b̃−(k)−1b̃+(k), Re(k0) < |k| ,
B̃−(k)−1B̃+(k), Re(k0) > |k| ,

(5.7)

where

b̃−(k) =

(
1 Rr(−k)e−tΦ(k)

Tr(−k,k0)2

0 1

)
, b̃+(k) =

(
1 0

Rr(k)etΦ(k)

Tr(k,k0)2 1

)
,

and

B̃−(k) =

(
1 0

−Tr,−(k,k0)−2

|T (k)|2 Rr(k)etΦ(k) 1

)
,

B̃+(k) =

(
1 −Tr,+(k,k0)2

|T (k)|2 Rr(−k)e−tΦ(k)

0 1

)
.
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Chapter 5. Analytic Approximation

Using (1.13) we can further write

B̃−(k) =

(
1 0

Rl(−k)etΦ(k)

Tl(−k,k0)2 1

)
, B̃+(k) =

(
1 Rl(k)e−tΦ(k)

Tl(k,k0)2

0 1

)
. (5.8)

In the similarity region we need to take the small vicinities of the stationary
phase points into account. Since the phase is cubic near these points, we cannot
use it to dominate the exponential growth of the analytic part away from the
unit circle. Hence we will take the phase as a new variable and use the Fourier
transform with respect to this new variable. Since this change of coordinates
is singular near the stationary phase points, there is a price we have to pay,
namely, requiring additional smoothness for R(k). If our solution q(x, t) is
decaying rapidly enough then we can conclude R(k) ∈ Cl(R). Therefore we
begin with

Lemma 5.2. Suppose R(k) ∈ C5(R). Then we can split R(k) according to

R(k) = R0(k) + (k − k0)(k + k0)H(k), k ∈ Σ(k0), (5.9)

where R0(k) is a real rational function in k such that H(k) vanishes at k0, −k0

of order three and has a Fourier transform

H(k) =
∫

R
Ĥ(x)exΦ(k)dx, (5.10)

with xĤ(x) integrable.

Proof. We can construct a rational function, which satisfies fn(−k) = fn(k) for

k ∈ R, by making the ansatz fn(k) = k2n+4
0 +1
k2n+4+1

∑n
j=0

1
j!(2k0)j (αj + iβj kk0

)(k −
k0)j(k+k0)j . Furthermore we can choose αj , βj ∈ R for j = 1, . . . , n, such that
we can match the values of R and its first four derivatives at k0, −k0 at fn(k).
Thus we will set R0(k) = f4(k), with α0 = Re(R(k0)), β0 = Im(R(k0)) and so
on. Note that R0(k) is integrable. Hence H(k) ∈ C4(R) and vanishes together
with its first three derivatives at k0, −k0.

Note that Φ(k)/i = 8(k3 − 3k2
0k) is a polynomial of order three which has a

maximum at −k0 and a minimum at k0. Thus the phase Φ(k)/i restricted to
Σ(k0) gives a one to one coordinate transform Σ(k0) → [Φ(k0)/i,Φ(−k0)/i] =
[−16k3

0, 16k3
0] and we can hence express H(k) in this new coordinate (setting it

equal to zero outside this interval). The coordinate transform locally looks like
a cube root near k0 and −k0, however, due to our assumption that H vanishes
there, H is still C2 in this new coordinate and the Fourier transform with respect
to this new coordinates exists and has the required properties.

Moreover, as in Lemma 5.1 we obtain:

Lemma 5.3. Let H(k) be as in the previous lemma. Then we can split H(k)
according to H(k) = Ha,t(k)+Hr,t(k) such that Ha,t(k) is analytic in the region
Re(Φ(k)) < 0 and

|Ha,t(k)eΦ(k)t/2| = O(1), Re(Φ(k)) < 0, Im(k) ≤ 0, |Hr,t(k)| = O(t−1), k ∈ R.
(5.11)
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Chapter 5. Analytic Approximation

Proof. We choose Ha,t(k) =
∫∞
−K(t)

Ĥ(x)exΦ(k)dx with K(t) = t/2. Then we
can conclude as in Lemma 5.1:

|Ha,t(k)eΦ(k)t/2| ≤
∫ ∞
−K(t)

|Ĥ(x)exΦ(k)+Φ(k)t/2|dx ≤ ‖Ĥ(x)‖1|e−K(t)Φ(k)+Φ(k)t/2|

≤ ‖Ĥ(x)‖1|e−Φ(k)t/2+Φ(k)t/2| = ‖Ĥ(x)‖1 ≤ const

and

|Hr,t(k)| ≤
∫ −K(t)

−∞
|Ĥ(x)|dx ≤ const

√∫ −K(t)

−∞

1
x4
dx ≤ const 1

K(t)3/2
≤ const1

t
.

By construction Ra,t(k) = R0(k)+(k−k0)(k+k0)Ha,t(k) will satisfy the re-
quired Lipschitz estimate in a vicinity of the stationary phase points (uniformly
in t) and all jumps will be I +O(t−1). Hence we can proceed as in Chapter 4.
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Appendix A

The Riemann-Hilbert
problem on a small cross

In this chapter, which is taken from Krüger and Teschl [13], we will solve the
Riemann–Hilbert problem on a small cross.

Introduce the cross Σ = Σ1 ∪ · · · ∪ Σ4 (see Figure A.1) by

Σ1 = {ue−iπ/4, u ∈ [0,∞)} Σ2 = {ueiπ/4, u ∈ [0,∞)}
Σ3 = {ue3iπ/4, u ∈ [0,∞)} Σ4 = {ue−3iπ/4, u ∈ [0,∞)}. (A.1)

Orient Σ such that the real part of z increases in the positive direction. Denote
by D = {z, |z| < 1} the open unit disc. Throughout this section ziν will denote
the function eiν log(z), where the branch cut of the logarithm is chosen along the
negative real axis (−∞, 0).

Now consider the Riemann–Hilbert problem given by

m+(z) = m−(z)vj(z), z ∈ Σj , j = 1, 2, 3, 4, (A.2)
m(z)→ I, z →∞,
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(
1 −R1(z) · · ·
0 1

)

(
1 0

R2(z) · · · 1

)
(

1 −R3(z) · · ·
0 1

)

(
1 0

R4(z) · · · 1

)

Figure A.1: Contours of a cross
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Chapter A. The Riemann-Hilbert problem on a small cross

where the jump matrices are given as follows: (vj for z ∈ Σj)

v1 =
(

1 −R1(z)z2iνe−tΦ(z)

0 1

)
, v2 =

(
1 0

R2(z)z−2iνetΦ(z) 1

)
,

v3 =
(

1 −R3(z)z2iνe−tΦ(z)

0 1

)
, v4 =

(
1 0

R4(z)z−2iνetΦ(z) 1

)
. (A.3)

We can now state the next theorem, which gives us the solution of the
Riemann–Hilbert problem (A.2). In the proof we follow the computations of
section 3 and 4 in Deift and Zhou [9].

We will allow some variation, in all parameters as indicated.

Theorem A.1. There is some ρ0 > 0 such that vj(z) = I for |z| > ρ0. More-
over, suppose that within |z| ≤ ρ0 the following estimates hold:

(i) The phase satisfies Φ(0) ∈ iR, Φ′(0) = 0, Φ′′(0) = i and

±Re
(
Φ(z)− Φ(0)

)
≥ 1

4
|z|2,

{
+ for z ∈ Σ1 ∪ Σ3,

− else,
(A.4)

|Φ(z)− Φ(0)− iz2

2
| ≤ C|z|3. (A.5)

(ii) There is some r ∈ D and constants (α,L) ∈ (0, 1] × (0,∞) such that Rj,
j = 1, . . . , 4, satisfy Hölder conditions of the form

|R1(z)− r| ≤ L|z|α, |R2(z)− r| ≤ L|z|α,

|R3(z)− r

1− |r|2
| ≤ L|z|α, |R4(z)− r

1− |r|2
| ≤ L|z|α. (A.6)

Then the solution of the Riemann–Hilbert problem (A.2) satisfies

m(z) = I +
1
z

i
t1/2

(
0 −β
β 0

)
+O(t−

1+α
2 ), (A.7)

for |z| > ρ0, where

β =
√
νei(π/4−arg(r)+arg(Γ(iν)))e−tΦ(0)t−iν , ν = − 1

2π
log(1− |r|2). (A.8)

Furthermore, if Rj(z) and Φ(z) depend on some parameter, the error term is
uniform with respect to this parameter as long as r remains within a compact
subset of D and the constants in the above estimates can be chosen independent
of the parameters.

Remark A.2. Note that the solution of the Riemann–Hilbert problem (A.2)
is unique. This follows from the usual Liouville argument [5, Lem. 7.18] since
det(vj) = 1.

The proof will be given in the rest of this chapter, but split into a few parts
for a better overview.
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Chapter A. The Riemann-Hilbert problem on a small cross

A.1 Approximation

A close look at the stated theorem shows, that the actual value of ρ0 is of no
importance. In fact, if we choose 0 < ρ1 < ρ0, then the solution m̃ of the
problem with jump ṽ, where ṽ is equal to v for |z| < ρ1 and I otherwise, differs
from m only by an exponentially small error.

This already indicates, that we should be able to replace Rj(z) by their re-
spective values at z = 0. To see this we start by rewriting our Riemann–Hilbert
problem as a singular integral equation. We will use the theory developed in
Appendix B for the case of 2 × 2 matrix valued functions with m0(z) = I and
the usual Cauchy kernel (since we won’t require symmetry in this section)

Ω∞(s, z) = I
ds

s− z
.

Moreover, since our contour is unbounded, we will again assume w ∈ L∞(Σ) ∩
L2(Σ). All results from Appendix B still hold in this case with some straight-
forward modifications, as the only difference is that µ is now a matrix and no
longer a vector. Indeed, as in Theorem B.3, in the special case b+(z) = vj(z)
and b−(z) = I for z ∈ Σj , we obtain

m(z) = I +
1

2πi

∫
Σ

µ(s)w(s)
ds

s− z
, (A.9)

where µ− I is the solution of the singular integral equation

(I− Cw)(µ− I) = CwI, (A.10)

that is,
µ = I + (I− Cw)−1CwI, Cwf = C−(wf). (A.11)

Here C denotes the usual Cauchy operator and we set w(z) = w+(z) (since
w−(z) = 0).

As our first step we will get rid of some constants and rescale the entire
problem by setting

m̂(z) = D(t)−1m(zt−1/2)D(t), (A.12)

where

D(t) =
(
d(t)−1 0

0 d(t)

)
, d(t) = etΦ(0)/2tiν/2. (A.13)

Then one easily checks that m̂(z) solves the Riemann–Hilbert problem

m̂+(z) = m̂−(z)v̂j(z), z ∈ Σj , j = 1, 2, 3, 4, (A.14)
m̂(z)→ I, z →∞, z /∈ Σ,
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Chapter A. The Riemann-Hilbert problem on a small cross

where v̂j(z) = D(t)−1vj(zt−1/2)D(t), j = 1, . . . , 4, explicitly

v̂1(z) =
(

1 −R1(zt−1/2)z2iνe−t(Φ(zt−1/2)−Φ(0))

0 1

)
,

v̂2(z) =
(

1 0
R2(zt−1/2)z−2iνet(Φ(zt−1/2)−Φ(0)) 1

)
,

v̂3(z) =
(

1 −R3(zt−1/2)z2iνe−t(Φ(zt−1/2)−Φ(0))

0 1

)
,

v̂4(z) =
(

1 0
R2(zt−1/2)z−2iνet(Φ(zt−1/2)−Φ(0)) 1

)
. (A.15)

Our next aim is to show that the solution m̂(z) of the rescaled problem is close
to the solution m̂c(z) of the Riemann–Hilbert problem

m̂c
+(z) = m̂c

−(z)v̂cj(z), z ∈ Σj , j = 1, 2, 3, 4, (A.16)

m̂c(z)→ I, z →∞, z /∈ Σ,

associated with the following jump matrices

v̂c1(z) =
(

1 −rz2iνe−iz2/2

0 1

)
, v̂c2(z) =

(
1 0

rz−2iνeiz2/2 1

)
,

v̂c3(z) =

(
1 − r

1−|r|2 z
2iνe−iz2/2

0 1

)
, v̂c4(z) =

(
1 0

r
1−|r|2 z

−2iνeiz2/2 1

)
. (A.17)

The difference between these jump matrices can be estimated as follows.

Lemma A.3. The matrices ŵc and ŵ are close in the sense that

ŵj(z) = ŵcj(z) +O(t−α/2e−|z|
2/8), z ∈ Σj , j = 1, . . . 4. (A.18)

Furthermore, the error term is uniform with respect to parameters as stated in
Theorem A.1.

Proof. We only give the proof z ∈ Σ1, the other cases being similar. There is
only one nonzero matrix entry in ŵ1(z)− ŵc1(z) given by

W =

{
−R1(zt−1/2)z2iνe−t(Φ(zt−1/2)−Φ(0)) + rz2iνe−iz2/2, |z| ≤ ρ0t

1/2,

rz2iνe−iz2/2 |z| > ρ0t
1/2.

A straightforward estimate for |z| ≤ ρ0t
1/2 shows

|W | = eνπ/4|R1(zt−1/2)e−tΦ̂(zt−1/2) − r|e−|z|
2/2

= eνπ/4
∣∣∣R1(zt−1/2e−tΦ̂(zt−1/2) − re−tΦ̂(zt−1/2) + re−tΦ̂(zt−1/2) − r

∣∣∣ e−|z|2/2
≤ eνπ/4|R1(zt−1/2)− r|eRe(−tΦ̂(zt−1/2))−|z|2/2

+ eνπ/4|e−tΦ̂(zt−1/2) − 1|e−|z|
2/2

≤ eνπ/4|R1(zt−1/2)− r|e−|z|
2/4 + eνπ/4t|Φ̂(zt−1/2)|e−|z|

2/4,
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where Φ̂(z) = Φ(z)−Φ(0)− i
2z

2 = Φ′′′(0)
6 z3+. . . . Here we have used i

2z
2 = 1

2 |z|
2

for z ∈ Σ1, Re(−tΦ̂(zt−1/2)) ≤ |z|2/4 by (A.4), and |r| < 1. Furthermore, by
(A.5) and (A.6),

|W | ≤ eνπ/4Lt−α/2|z|αe−|z|
2/4 + eνπ/4Ct−1/2|z|3e−|z|

2/4,

for |z| ≤ ρ0t
1/2. For |z| > ρ0t

1/2 we have

|W | ≤ eνπ/4e−|z|
2/2 ≤ eνπ/4e−ρ

2
0t/4e−|z|

2/4

which finishes the proof.

The next lemma allows us, to replace m̂(z) by m̂c(z).

Lemma A.4. Consider the Riemann–Hilbert problem

m+(z) = m−(z)v(z), z ∈ Σ, (A.19)
m(z)→ I, z →∞, z /∈ Σ.

Assume that w ∈ L2(Σ) ∩ L∞(Σ). Then

‖µ− I‖2 ≤
c‖w‖2

1− c‖w‖∞
(A.20)

provided c‖w‖∞ < 1, where c is the norm of the Cauchy operator on L2(Σ).

Proof. We know that µ̃ = µ − I ∈ L2(Σ) and satisfies (I − Cw)µ̃ = CwI. Thus
we can estimate µ̃ by using Neumann series as follows:

‖µ̃‖2 =
∥∥(I− Cw)−1Cw

∥∥
2

=
∥∥(I + Cw + C2

w + . . . )Cw
∥∥

2

≤ ‖Cw‖2 +
∥∥C2

w

∥∥
2

+
∥∥C3

w

∥∥
2

+ . . .

≤ c ‖w‖2 + c2 ‖w‖2 ‖w‖∞ + c3 ‖w‖2 ‖w‖
2
∞ + . . .

≤ c ‖w‖2 (1 + c ‖w‖∞ + c2 ‖w‖2∞ + . . . )

= c ‖w‖2
1

1− c ‖w‖∞
.

Here we have used that

‖Cw(f)‖2 ≤ c ‖f‖2 ‖w‖∞ . (A.21)

Lemma A.5. The solution m̂(z) has a convergent asymptotic expansion

m̂(z) = I +
1
z
M̂(t) +O(

1
z2

) (A.22)

for |z| > ρ0t
1/2 with the error term uniformly in t. Moreover,

M̂(t) = M̂ c +O(t−α/2). (A.23)

35



Chapter A. The Riemann-Hilbert problem on a small cross

Proof. Consider m̂d(z) = m̂(z)m̂c(z)−1, whose jump matrix is given by

v̂d(z) = m̂c
−(z)v̂(z)v̂c(z)−1m̂c

−(z)−1

= m̂c
−(z)(I + ŵ(z))(I + ŵc(z))−1m̂c

−(z)−1

= m̂c
−(z)(I + ŵ(z))(I− ŵc(z))m̂c

−(z)−1

= m̂c
−(z)(I + ŵ(z)− ŵc(z)− ŵ(z)ŵc(z))m̂c

−(z)−1

= I + m̂c
−(z)(ŵ(z)− ŵc(z))m̂c

−(z)−1.

By Lemma A.3, we have that ŵ − ŵc is decaying of order t−α/2 in the norms
of L1 and L∞ and hence also in the norm of L2. Thus the same is true for
ŵd = v̂d − I = m̂c

−(z)(ŵ(z)− ŵc(z))m̂c
−(z)−1. Hence by the previous lemma

‖µ̂d − I‖2 = O(t−α/2).

Furthermore, by µ̂d = m̂d
− = m̂−(m̂c

−)−1 = µ̂(µ̂c)−1 we infer

‖µ̂− µ̂c‖2 =
∥∥µ̂dµ̂c − µ̂c∥∥

2
= O(t−α/2)

since µ̂c is bounded. Now

m̂(z) = I +
1

2πi

∫
Σ

µ̂(s)ŵ(s)
1

s− z
ds

= I− 1
2πi

1
z

∫
Σ

µ̂(s)ŵ(s)
∞∑
l=0

(s
z

)l
ds

= I− 1
2πi

1
z

∫
Σ

µ̂(s)ŵ(s)ds+
1

2πi
1
z

∫
Σ

sµ̂(s)ŵ(s)
ds

s− z

shows (recall that ŵ is supported inside |z| ≤ ρ0t
1/2)

m̂(z) = I +
1
z
M̂(t) +O(

‖µ̂(s)‖2‖sŵ(s)‖2
z2

),

where
M̂(t) = − 1

2πi

∫
Σ

µ̂(s)ŵ(s)ds.

Now the rest follows from

M̂(t) = M̂ c − 1
2πi

∫
Σ

(µ̂(s)ŵ(s)− µ̂c(s)ŵc(s))ds

using ‖µ̂ŵ − µ̂cŵc‖1 ≤ ‖ŵ − ŵc‖1 + ‖µ̂− I‖2‖ŵ − ŵc‖2 + ‖µ̂− µ̂c‖2‖ŵc‖2.

A.2 Solving the Riemann–Hilbert problem on a
small cross with constant jumps

Finally, it remains to solve (A.16) and to show:

Theorem A.6. The solution of the Riemann–Hilbert problem (A.16) is of the
form

m̂c(z) = I +
1
z
M̂ c +O(

1
z2

), (A.24)
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Figure A.2: Deforming back the cross

where

M̂ c = i
(

0 −β
β 0

)
, β =

√
νei(π/4−arg(r)+arg(Γ(iν))). (A.25)

The error term is uniform with respect to r in compact subsets of D. Moreover,
the solution is bounded (again uniformly with respect to r).

Given this result, Theorem A.1 follows from Lemma A.5

m(z) = D(t)m̂(zt1/2)D(t)−1 = I +
1

t1/2z
D(t)M̂(t)D(t)−1 +O(z−2t−1)

= I +
1

t1/2z
D(t)M̂ cD(t)−1 +O(t−(1+α)/2) (A.26)

for |z| > ρ0, since D(t) is bounded.
The proof of this result will be given in the remainder of this section. In

order to solve (A.16) we begin with a deformation which moves the jump to R
as follows. Denote the region enclosed by R and Σj as Ωj (cf. Figure A.2) and
define

m̃c(z) = m̂c(z)

{
D0(z)Dj , z ∈ Ωj , j = 1, . . . , 4,
D0(z), else,

(A.27)

where

D0(z) =

(
ziνe−iz2/4 0

0 z−iνeiz2/4

)
,

and

D1 =
(

1 r
0 1

)
D2 =

(
1 0
r 1

)
D3 =

(
1 − r

1−|r|2

0 1

)
D4 =

(
1 0

− r
1−|r|2 1

)
.

Lemma A.7. The function m̃c(z) defined in (A.27) satisfies the Riemann–
Hilbert problem

m̃c
+(z) = m̃c

−(z)
(

1− |r|2 −r
r 1

)
, z ∈ R (A.28)

m̃c(z) = (I +
1
z
M̂ c + . . . )D0(z), z →∞, π

4
< arg(z) <

3π
4
.
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Proof. First, one checks that m̃c
+(z) = m̃c

−(z)D0(z)−1v̂c1(z)D0(z)D1 = m̃c
−(z),

z ∈ Σ1 and similarly for z ∈ Σ2,Σ3,Σ4. To compute the jump along R observe
that, by our choice of branch cut for ziν , D0(z) has a jump along the negative
real axis given by

D0,±(z) =

(
e(log |z|±iπ)iνe−iz2/4 0

0 e−(log |z|±iπ)iνeiz2/4

)
, z < 0.

Hence the jump along R is given by

D−1
1 D2, z > 0 and D−1

4 D−1
0,−(z)D0,+(z)D3, z < 0,

and (A.28) follows after recalling e−2πν = 1− |r|2.

Now, we can follow (4.17) to (4.51) in [9] to construct an approximate solu-
tion.

The idea is as follows, since the jump matrix for (A.28), the derivative
d
dz m̃

c(z) has the same jump and hence is given by n(z)m̃c(z), where the en-
tire matrix n(z) can be determined from the behavior z → ∞. Since this will
just serve as a motivation for our ansatz, we will not worry about justifying any
steps.

For z in the sector π
4 < arg(z) < 3π

4 (enclosed by Σ2 and Σ3) we have
m̃c(z) = m̂c(z)D0(z) and hence(

d

dz
m̃c(z) +

iz
2
σ3m̃

c(z)
)
m̃c(z)−1

=
(

i(
ν

z
− z

2
)m̂c(z)σ3 +

d

dz
m̂c(z) + i

z

2
σ3m̂

c(z)
)
m̂c(z)−1

=
i
2

[σ3, M̂
c] +O(

1
z

), σ3 =
(

1 0
0 −1

)
.

Here we assumed that the solution of the Riemann–Hilbert problem A.16 is
given by (A.24) and inserted it. Since the left hand side has no jump, it is
entire and hence by Liouville’s theorem a constant given by the right hand side.
In other words,

d

dz
m̃c(z) +

iz
2
σ3m̃

c(z) = βm̃c(z), β =
(

0 β12

β21 0

)
=

i
2

[σ3, M̂
c]. (A.29)

This differential equation can be solved in terms of parabolic cylinder function
which then gives the solution of (A.28).

Lemma A.8. The Riemann–Hilbert problem (A.28) has a unique solution, and
the term M̂ c is given by

M̂ c = i
(

0 −β12

β21 0

)
, β12 = β21 =

√
νei(π/4−arg(r)+arg(Γ(iν))). (A.30)

Proof. Uniqueness follows by the standard Liouville argument since the deter-
minant of the jump matrix is equal to 1. We find the solution using the ansatz

m̃c(z) =
(
ψ11(z) ψ12(z)
ψ21(z) ψ22(z)

)
.
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¿From (A.29) we can conclude that the functions ψjk(z) satisfy

ψ′′11(z) = −
(

i
2

+
1
4
z2 − β12β21

)
ψ11(z), ψ12(z) =

1
β21

(
d

dz
− iz

2

)
ψ22(z),

ψ21(z) =
1
β12

(
d

dz
+

iz
2

)
ψ11(z), ψ′′22(z) =

(
i
2
− 1

4
z2 + β12β21

)
ψ22(z).

That is, ψ11(e3πi/4ζ) satisfies the parabolic cylinder equation

D′′(ζ) +
(
a+

1
2
− 1

4
ζ2

)
D(ζ) = 0

with a = iβ12β21 and ψ22(eiπ/4ζ) satisfies the parabolic cylinder equation with
a = −iβ12β21.

Let Da be the entire parabolic cylinder function of §16.5 in [20] and set

ψ11(z) =

{
e−3πν/4Diν(−eiπ/4z), Im(z) > 0,
eπν/4Diν(eiπ/4z), Im(z) < 0,

ψ22(z) =

{
eπν/4D−iν(−ieiπ/4z), Im(z) > 0,
e−3πν/4D−iν(ieiπ/4z), Im(z) < 0.

Using the asymptotic behavior

Da(z) = zae−z
2/4
(
1− a(a− 1)

2z2
+O(z−4)

)
, z →∞, |arg(z)| ≤ 3π/4,

shows that the choice β12β21 = ν ensures the correct asymptotics

ψ11(z) = ziνe−iz2/4(1 +O(z−2)),

ψ12(z) = −iβ12z
−iνeiz2/4(z−1 +O(z−3)),

ψ21(z) = iβ21z
iνe−iz2/4(z−1 +O(z−3)),

ψ22(z) = z−iνeiz2/4(1 +O(z−2)),

as z →∞ inside the half plane Im(z) ≥ 0. In particular,

m̃c(z) =
(
I +

1
z
M̂ c +O(z−2)

)
D0(z) with M̂ c = i

(
0 −β12

β21 0

)
.

It remains to check that we have the correct jump. Since by construction both
limits m̃c

+(z) and m̃c
−(z) satisfy the same differential equation (A.29), there is

a constant matrix v such that m̃c
+(z) = m̃c

−(z)v. Moreover, since the coefficient
matrix of the linear differential equation (A.29) has trace 0, the determinant of
m̃c
±(z) is constant and hence det(m̃c

±(z)) = 1 by our asymptotics. Moreover,
evaluating

v = m̃c
−(0)−1m̃c

+(0) =

(
e−2πν −

√
2πe−iπ/4e−πν/2√

νΓ(iν)
γ−1

√
2πeiπ/4e−πν/2
√
νΓ(−iν)

γ 1

)

where γ =
√
ν

β12
= β21√

ν
. Here we have used

Da(0) =
2a/2
√
π

Γ((1− a)/2)
, D′a(0) = −2(1+a)/2

√
π

Γ(−a/2)
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plus the duplication formula Γ(z)Γ(z + 1
2 ) = 21−2z

√
πΓ(2z) for the Gamma

function. Hence, if we choose

γ =
√
νΓ(−iν)√

2πeiπ/4e−πν/2
r,

we have

v =
(

1− |r|2 −r
r 1

)
since |γ|2 = 1. To see this use |Γ(−iν)|2 = Γ(1−iν)Γ(iν)

−iν = π
ν sinh(πν) which follows

from Euler’s reflection formula Γ(1− z)Γ(z) = π
sin(πz) for the Gamma function.

In particular,

β12 = β21 =
√
νei(π/4−arg(r)+arg(Γ(iν)))

which finishes the proof.
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Appendix B

Singular integral equations

In this chapter we show how to transform a meromorphic vector Riemann–
Hilbert problem with simple poles at iκ, −iκ,

m+(k) = m−(k)v(k), k ∈ Σ,

Resiκm(k) = lim
k→iκ

m(k)
(

0 0
iγ2 0

)
, Res−iκm(k) = lim

k→−iκ
m(k)

(
0 −iγ2

0 0

)
,

(B.1)

m(−k) = m(k)
(

0 1
1 0

)
,

lim
κ→∞

m(iκ) =
(
1 1

)
into a singular integral equation. Since we require the symmetry condition
(1.20) for our Riemann–Hilbert problem we need to adapt the usual Cauchy
kernel to preserve this symmetry. Moreover, we keep the single soliton as an
inhomogeneous term which will play the role of the leading asymptotics in our
applications.

B.1 Properties of the Cauchy-transform

The classical Cauchy-transform of a function f : Σ → C which is square inte-
grable is the analytic function Cf : C\Σ→ C given by

Cf(k) =
1

2πi

∫
Σ

f(s)
s− k

ds, k ∈ C\Σ. (B.2)

Denote the tangential boundary values from both sides (taken possibly in the
L2-sense — see e.g. [5, eq. (7.2)]) by C+f respectively C−f . Then it is well-
known that C+ and C− are bounded operators L2(Σ) → L2(Σ), which satisfy
C+ − C− = I (see e.g. [5]). Moreover, one has the Plemelj–Sokhotsky formula
([16])

C± =
1
2

(iH ± I),

where

Hf(k) =
1
π
−
∫

Σ

f(s)
k − s

ds, k ∈ Σ, (B.3)

41



Chapter B. Singular integral equations

is the Hilbert transform and −
∫

denotes the principal value integral.
In order to respect the symmetry condition we will restrict our attention to

the set L2
s(Σ) of square integrable functions f : Σ→ C2 such that

f(−k) = f(k)
(

0 1
1 0

)
. (B.4)

Clearly this will only be possible if we require our jump data to be symmetric
as well:

Hypothesis H. B.1. Suppose the jump data (Σ, v) satisfy the following as-
sumptions:

(i) Σ consist of a finite number of smooth oriented finite curves in C which
intersect at most finitely many times with all intersections being transver-
sal.

(ii) The distance between Σ and {iy|y ≥ y0} is positive for some y0 > 0 and
±iκ 6∈ Σ.

(iii) Σ is invariant under k 7→ −k and is oriented such that under the mapping
k 7→ −k sequences converging from the positive sided to Σ are mapped to
sequences converging to the negative side.

(iv) The jump matrix v is invertible and can be factorized according to v =
b−1
− b+ = (I− w−)−1(I + w+), where w± = ±(b± − I) satisfy

w±(−k) = −
(

0 1
1 0

)
w∓(k)

(
0 1
1 0

)
, k ∈ Σ. (B.5)

(v) The jump matrix satisfies

‖w‖∞ = ‖w+‖L∞(Σ) + ‖w−‖L∞(Σ) <∞,
‖w‖2 = ‖w+‖L2(Σ) + ‖w−‖L2(Σ) <∞. (B.6)

Next we introduce the Cauchy operator

(Cf)(k) =
1

2πi

∫
Σ

f(s)Ωκ(s, k) (B.7)

acting on vector-valued functions f : Σ→ C2. Here the Cauchy kernel is given
by

Ωκ(s, k) =
(k+iκ
s+iκ

1
s−k 0

0 k−iκ
s−iκ

1
s−k

)
ds =

( 1
s−k −

1
s+iκ 0

0 1
s−k −

1
s−iκ

)
ds, (B.8)

for some fixed iκ /∈ Σ. In the case κ =∞ we set

Ω∞(s, k) =
( 1
s−k 0
0 1

s−k

)
ds. (B.9)

and one easily checks the symmetry property:

Ωκ(−s,−k) =
(

0 1
1 0

)
Ωκ(s, k)

(
0 1
1 0

)
. (B.10)

The properties of C are summarized in the next lemma.
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Lemma B.2. Assume Hypothesis B.1. The Cauchy operator C has the proper-
ties, that the boundary values C± are bounded operators L2

s(Σ)→ L2
s(Σ) which

satisfy
C+ − C− = I (B.11)

and
(Cf)(−iκ) = (0 ∗), (Cf)(iκ) = (∗ 0). (B.12)

Furthermore, C restricts to L2
s(Σ), that is

(Cf)(−k) = (Cf)(k)
(

0 1
1 0

)
, k ∈ C\Σ (B.13)

for f ∈ L2
s(Σ) or L∞s (Σ) and if w± satisfy (H.B.1) we also have

C±(fw∓)(−k) = C∓(fw±)(k)
(

0 1
1 0

)
, k ∈ Σ. (B.14)

Proof. Everything follows from (B.10) and the fact that C inherits all properties
from the classical Cauchy operator.

B.2 Singular integral equations in the context
of Riemann–Hilbert problems

We have thus obtained a Cauchy transform with the required properties. Fol-
lowing Section 7 and 8 of [2], we can solve our Riemann–Hilbert problem using
this Cauchy operator.

Introduce the operator Cw : L2
s(Σ)→ L2

s(Σ) by

Cwf = C+(fw−) + C−(fw+), f ∈ L2
s(Σ) (B.15)

and this operator is also well-defined for f ∈ L∞s (Σ) and Cwf ∈ L2
s(Σ). Fur-

thermore recall from Lemma 1.8 that the unique solution corresponding to v ≡ I
is given by

m0(k) =
(
f(k) f(−k)

)
,

f(k) =
1

1 + (2κ)−1γ2etΦ(iκ)

(
1 +

k + iκ
k − iκ

(2κ)−1γ2etΦ(iκ)

)
.

Observe that for γ = 0 we have f(k) = 1 and for γ =∞ we have f(k) = k+iκ
k−iκ .

In particular, f(k) is uniformly bounded away from iκ for all γ ∈ [0,∞].
Then we have the next result.

Theorem B.3. Assume Hypothesis B.1.
Suppose m solves the Riemann–Hilbert problem (B.1). Then

m(k) = (1− c0)m0(k) +
1

2πi

∫
Σ

µ(s)(w+(s) + w−(s))Ωκ(s, k), (B.16)

where

µ = m+b
−1
+ = m−b

−1
− and c0 =

(
1

2πi

∫
Σ

µ(s)(w+(s) + w−(s))Ωκ(s,∞)
)

1

.
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Here (m)j denotes the j’th component of a vector. Furthermore, µ solves

(I− Cw)(µ(k)− (1− c0)m0(k)) = Cw(1− c0)m0(k) (B.17)

Conversely, suppose µ̃ solves

(I− Cw)(µ̃(k)−m0(k)) = Cwm0(k), (B.18)

and

c̃0 =
(

1
2πi

∫
Σ

µ̃(s)(w+(s) + w−(s))Ωκ(s,∞)
)

1

6= 1,

then m defined via (B.16), with (1 − c0) = (1 + c̃0)−1 and µ = (1 + c̃0)−1µ̃,
solves the Riemann–Hilbert problem (B.1) and µ = m±b

−1
± .

Proof. First of all note that by (B.14) (I−Cw) satisfies the symmetry condition
and hence so do m0 + (I− Cw)−1Cwm0 and m.

So if m solves (B.1) and we set µ = m±b
−1
± , then m satisfies an additive

jump given by
m+ −m− = µ(w+ + w−),

as the following calculation shows

m+ −m−
= (1− c0)(m0,+ −m0,−) + (C+(µw+) + C+(µw−)− C−(µw+)− C−(µw−))
= (C+(µw+)− C−(µw+)) + (C+(µw−)− C−(µw−))
= µ(w+w−).

Hence, if we denote the left hand side of (B.16) by m̃, both functions satisfy
the same additive jump. So m− m̃ has no jump and must thus solve (B.1) with
v ≡ I. By uniqueness (Corollary 2.3) m − m̃ = αm0 for some α ∈ C and by
looking at the first component at k →∞ we see α = 0, that is m = m̃.

Moreover, if m is given by (B.16), then (B.11) implies

m± = (1− c0)m0 + C±(µw−) + C±(µw+) (B.19)
= (1− c0)m0 + C±(µw−) + C∓(µw+) + C±(µw+)− C∓(µw+)
= (1− c0)m0 + Cw(µ)± µw±
= (1− c0)m0 − (I− Cw)µ+ µ(I± w±)
= (1− c0)m0 − (I− Cw)µ+ µb±.

¿From this we conclude that µ = m±b
−1
± solves (B.17).

Conversely, if µ̃ solves (B.18), then set

m̃(k) = m0(k) +
1

2πi

∫
Σ

µ̃(s)(w+(s) + w−(s))Ωζ(s, k),

and the same calculation as in (B.19) implies m̃± = µ̃b±, which implies that
m = (1 + c̃0)−1m̃ solves the Riemann-Hilbert problem (B.1).

Remark B.4. In our case m0(k) ∈ L∞(Σ), but m0(k) is not square integrable
and so µ ∈ L2(Σ) + L∞(Σ) in general.

In the case where the contour Σ is bounded m0(k) ∈ L∞(Σ) implies that
m0(k) square integrable and we can directly apply (I− Cw)−1 to m0(k).
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Note also that in the special case γ = 0 we have m0(k) =
(
1 1

)
and we can

choose κ as we please, say κ =∞ such that c0 = c̃0 = 0 in the above theorem.
Hence we have a formula for the solution of our Riemann–Hilbert problem

m(k) in terms of m0 + (I− Cw)−1Cwm0 and this clearly raises the question of
bounded invertibility of I − Cw as a map from L2

s(Σ) → L2
s(Σ). This follows

from Fredholm theory (cf. e.g. [21]):

Lemma B.5. Assume Hypothesis B.1. The operator I − Cw is Fredholm of
index zero,

ind(I− Cw) = 0. (B.20)

Proof. Since one can easily check

(I− Cw)(I− C−w) = (I− C−w)(I− Cw) = I− Tw, (B.21)

where

Tw = T++ + T+− + T−+ + T−−, Tσ1σ2(f) = Cσ1 [Cσ2(fw−σ2)w−σ1 ],

it suffices to check that the operators Tσ1σ2 are compact ([17, Thm. 1.4.3]). By
Mergelyan’s theorem we can approximate w± by rational functions and, since
the norm limit of compact operators is compact, we can assume without loss
that w± have an analytic extension to a neighborhood of Σ.

Indeed, suppose fn ∈ L2(Σ) converges weakly to zero. Without loss we can
assume fn to be continuous. We will show that ‖Twfn‖L2 → 0.

Using the analyticity of w in a neighborhood of Σ and the definition of C±,
we can slightly deform the contour Σ to some contour Σ± close to Σ, on the
left, and have, by Cauchy’s theorem,

T++fn(z) =
1

2πi

∫
Σ+

(C(fnw−)(s)w−(s))Ωκ(s, z).

Now (C(fnw−)w−)(z)→ 0 as n→∞. Also

|(C(fnw−)w−)(z)| < const ‖fn‖L2‖w−‖L∞ < const

and thus, by the dominated convergence theorem, ‖T++fn‖L2 → 0 as desired.
Moreover, considering I − εCw = I − Cεw for 0 ≤ ε ≤ 1 we obtain ind(I −

Cw) = ind(I) = 0 from homotopy invariance of the index.

By the Fredholm alternative, it follows that to show the bounded invertibility
of I−Cw we only need to show that ker(I−Cw) = 0. The latter being equivalent
to unique solvability of the corresponding vanishing Riemann–Hilbert problem.

Corollary B.6. Assume Hypothesis B.1. A unique solution of the Riemann–
Hilbert problem (B.1) exists if and only if the corresponding vanishing Riemann–
Hilbert problem, where the normalization condition is replaced by m(k) =

(
0 0

)
as k →∞, has at most one solution.

Proof. Suppose (I − Cw)µ = 0 for some µ ∈ L2
s(Σ). Set m̃(k) = (Cw)(µ)(k)

for k ∈ C\Σ. Then m̃(k) solves the Riemann-Hilbert problem where the nor-
malization condition is given by ˜m(k) =

(
0 0

)
as k → ∞. Hence mγ(k) =

m(k) + γm̃(k) is a solution of the Riemann-Hilbert problem (B.1) for any γ.
Thus uniqueness of the solution implies that m̃(k) ≡ 0 ∈ C\Σ.
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The other direction follows immediately, by the fact that a solution of the
vanishing Riemann-Hilbert problem is given by m̃(k) ≡ 0 and hence our original
Riemann-Hilbert problem has a unique solution.

We are interested in comparing two Riemann–Hilbert problems associated
with respective jumps w0 and w with ‖w−w0‖∞ and ‖w − w0‖2 small, where

‖w‖∞ = ‖w+‖L∞(Σ) + ‖w−‖L∞(Σ). (B.22)

and
‖w‖2 = ‖w+‖L2(Σ) + ‖w−‖L2(Σ) (B.23)

For such a situation we have the following result:

Theorem B.7. Fix a contour Σ and choose κ, γ = γt, vt depending on some
parameter t ∈ R such that Hypothesis 2.1 holds.

Assume that wt satisfies

‖wt‖∞ ≤ ρ(t) and ‖wt‖2 ≤ ρ(t) (B.24)

for some function ρ(t)→ 0 as t→∞. Then (I−Cwt)−1 : L2
s(Σ)→ L2

s(Σ) exists
for sufficiently large t and the solution m(k) of the Riemann–Hilbert problem
(B.1) differs from the one-soliton solution mt

0(k) only by O(ρ(t)), where the
error term depends on the distance of k to Σ ∪ {±iκ}.

Proof. By the boundedness of the Cauchy transform we conclude that

‖Cwt‖L2
s→L2

s
≤ const‖wt‖∞ respectively ‖Cwt‖L∞s →L2

s
≤ const‖wt‖2.

(B.25)
Thus by the second resolvent identity, we infer that (I−Cwt)−1 exists for large
t and ∥∥(I− Cwt)−1−

∥∥
L2
s→L2

s
= O(α(t)).

Next we observe that

µ̃t −mt
0 = (I− Cwt)−1Cwtm

t
0 ∈ L2

s

and we can therefore conclude

‖m̃ut −mt
0‖L2

s
= ‖(I− Cwt)−1Cwtm

t
0‖L2

s(Σ)

const‖Cwtmt
0‖L2

s
= O(ρ(t)),

because ‖mt
0|L∞ (note also µ̃t = µt0 = mt

0). Thus we have c̃t0 = O(ρ(t)).
Consequently ct0 = O(ρ(t)) and by using the representation for mt(k) from
Lemma B.3, we finally obtain mt(k)−mt

0(k) = O(ρ(t)) uniformly in k as long
as it stays a positive distance away from Σ ∪ {±iκ}.
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