Dual addition formula for Gegenbauer polynomials

Tom Koornwinder (University of Amsterdam)

Abstract

. The addition formula for Legendre polynomials $P_{n}(x)$ gives the expansion of $P_{n}(\cos x \cos y+\sin x \sin y \cos t)$ in terms of $\cos (k t)(k=0,1, \ldots, n)$. Its constant term implies the product formula $$
P_{n}(\cos x) P_{n}(\cos y)=\pi^{-1} \int_{0}^{\pi} P_{n}(\cos x \cos y+\sin x \sin y \cos t) d t
$$

A dual version of this product formula is the linearization formula

$$
P_{m}(x) P_{n}(x)=\sum_{k=0}^{\min (m, n)} c_{m, n, k} P_{m+n-2 k}(x)
$$

Askey conjectured that there is a related dual addition formula which expands $P_{m+n-2 k}(x)$ in terms of certain functions of k. The lecture will answer this in the positive sense, also more generally for Gegenbauer polynomials. The needed functions of k are special Racah polynomials.
Reference: arXiv:1607.06053

Mathematical Physics Seminar
20.3.2017, 12:30

1090 Wien, Oskar-Morgenstern-Platz 1, Besprechungszimmer 2 (2nd floor)

