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Abstract. We consider the inverse spectral problem for a class of reflection-

less bounded Jacobi operators with empty singularly continuous spectra. Our

spectral hypotheses admit countably many accumulation points in the set of
eigenvalues as well as in the set of boundary points of intervals of absolutely

continuous spectrum. The corresponding isospectral set of Jacobi operators is

explicitly determined in terms of Dirichlet-type data.

1. Introduction

The principal aim of this paper is to study certain bounded self-adjoint Jacobi
operators whose inverse spectral theory and isospectral class can be characterized
explicitly.

Since the literature on inverse spectral theory for Jacobi operators (especially
in the periodic and short-range scattering case) is rather extensive, we confine
ourselves to a brief account of those results which are close in spirit to our ap-
proach. In this context, the use of auxiliary spectral problems of the Dirichlet-type
in connection with either the moment problem or the algebro-geometric approach
to (quasi-)periodic finite-gap Jacobi operators, comes to mind first. Dirichlet spec-
tra and the moment problem were first combined in the pioneering work by Kac
and van Moerbeke [23], [24], [29]. The Jacobi inversion problem in connection with
Dirichlet divisors appeared in Date and Tanaka [12] (see also [36]) and simultane-
ously in Dubrovin, Matveev, and Novikov [15] with further developments in [28],
[30], [31]. (The algebro-geometric method is presented in great detail in [6].) A
complete algebro-geometric treatment of Toda and Kac-van Moerbeke hierarchies
can be found in [8]; the isospectral torus of quasi-periodic Jacobi operators is ex-
plicitly realized in [20]. The next step involved extensions to certain almost periodic
and random stationary Jacobi operators with infinitely many gaps in their spec-
trum. Based on fundamental contributions by Levitan [26], followed by Kotani and
Krishna [25] and Craig [11] in the case of Schrödinger operators, Antony and Kr-
ishna [2], [3] and especially Sodin and Yuditskĭı[34], [35] characterized the inverse
spectral problem for certain classes of almost periodic Jacobi operators by solving
an infinite dimensional Jacobi inversion problem. In the random case Carmona and
Kotani [9] provided necessary and sufficient conditions for a Herglotz function to
be the expectation of a half-line Weyl m-function for a class of random stationary
Jacobi operators. These extensions use elements of harmonic analysis, in particu-
lar, Herglotz properties of diagonal Green’s functions and their boundary behavior
on the real line.
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In this paper we consider a different class of bounded Jacobi operators H with in-
finitely many gaps in their spectrum. More precisely, we assume that the spectrum
Σ of H satisfies

(1.1) Σ = R\
⋃

j∈J0∪{∞}

ρj ,

where J ⊆ N, J0 = J ∪ {0},
ρ0 = (−∞, E0), ρ∞ = (E∞,∞),

E0 ≤ E2j−1 < E2j ≤ E∞, ρj = (E2j−1, E2j), j ∈ J,
−∞ < E0 < E∞ <∞, ρj ∩ ρk = ∅ for j 6= k

(1.2)

such that the set A of all accumulation points of {E2j−1, E2j}j∈J is countable, that
is,

(1.3) A = {E2j−1, E2j}′j∈J is countable.

(Here A′ denotes the derived set of A ⊂ R, i.e., the set of all accumulation points
of A.)

Hypotheses (1.1)–(1.3) include situations such as the class of algebro-geometric
finite-gap Jacobi operators on one hand and Jacobi operators with pure point spec-
trum with at most countably many accumulation points on the other hand. Our
methods integrate the use of trace formulas and Herglotz functions (as recently
outlined by Gesztesy and Simon [17], [18]) and the moment problem. In particular,
the isospectral set of all Jacobi operators with spectrum Σ satisfying (1.1)–(1.3) is
explicitly determined in Theorem 4.3.

2. Preliminaries

In this section we recall some of the basic facts on Jacobi operators needed in
Sections 3 and 4. Detailed accounts of this material can be found, for instance, in
[7], Ch. VII, [10], Ch. III, [20], Appendices A–D.

Let {a(m) > 0}m∈Z, {b(m)}m∈Z ∈ `∞R (Z) be bounded real-valued
sequences and introduce the bounded self-adjoint Jacobi operator H in `2(Z) by

(2.1) (Hf)(m) = (τf)(m), f = {f(m)}m∈Z ∈ `2(Z),

with the difference expression τ defined by

(2.2) (τf)(m) = a(m)f(m+ 1) + a(m− 1)f(m− 1) + b(m)f(m), m ∈ Z.
The Green’s function G(z,m, n) associated with the resolvent (H − z)−1 of H then
can be represented by

G(z, n, n′) = (δ(n), (H − z)−1δ(n′))

= W (u−(z), u+(z))−1

{
u−(z, n)u+(z, n′), n ≤ n′
u+(z, n)u−(z, n′), n ≥ n′ ,

z ∈ C\σ(H), n, n′ ∈ Z.

(2.3)

Here δ(n) = {δm,n}m∈Z, σ(.) abbreviates the spectrum, u±(z, .) are Weyl solutions
satisfying

(2.4) τu±(z) = zu±(z), u±(z, .) ∈ `2((m0,±∞) ∩ Z), m0 ∈ Z, z ∈ C\(H),

and W (f, g)(n) denotes the Wronskian

(2.5) W (f, g)(m) = a(m)[f(m)g(m+ 1)− f(m+ 1)g(m)], m ∈ Z.
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Since H is in the limit point case at ±∞, u±(z, .) are unique up to constant mul-
tiples. They can be chosen to be holomorphic for z ∈ C\σess(H) (σess(.) denoting
the essential spectrum).

Next, denote by H±,n, n ∈ Z the restrictions of H to `2([n ± 1,±∞) ∩ Z) with
a Dirichlet boundary condition at the point n ∈ Z, that is,

(2.6) (H±,nf)(m) = (τf)(m), f ∈ {g ∈ `2([n± 1,±∞) ∩ Z)|g(n) = 0}.
The Weyl m-functions m±,n(z) associated with H±,n are then given by

m±,n(z) = (δ(n± 1), (H±,n − z)−1δ(n± 1))

=

{
−u+(z, n+ 1)/[a(n)u+(z, n)]
−u−(z, n− 1)/[a(n− 1)u−(z, n)]

.
(2.7)

Introducing the abbreviations,

g(z, n) = G(z, n, n),(2.8)

h(z, n) = 2a(n)G(z, n, n+ 1)− 1,(2.9)

M+(z, n) = a(n)2m+,n(z),(2.10)

M−(z, n) = a(n− 1)2m−,n(z) + z − b(n),(2.11)

one infers

g(z, n) = −[M+(z, n) +M−(z, n)]−1,(2.12)

g(z, n+ 1) = a(n)−2M+(z, n)M−(z, n)[M+(z, n) +M−(z, n)]−1,(2.13)

h(z, n) = [M+(z, n)−M−(z, n)][M+(z, n) +M−(z, n)]−1.(2.14)

We recall that for all n ∈ Z, g(., n) and M±(., n) are Herglotz functions (in con-
trast to h(., n)). Finally, if σp(.) abbreviates the point spectrum (i.e., the set of
eigenvalues) one obtains

E ∈ σp(H) if and only if − lim
ε↓0

iε[g(E + iε, n) + g(E + iε, n+ 1)] > 0,(2.15)

µ ∈ σp(H±,n) if and only if − lim
ε↓0

iεM±(µ+ iε, n) > 0.(2.16)

3. The Direct Spectral Problem

In this section we discuss the direct spectral problem for a certain class of reflec-
tionless bounded Jacobi operators.

In order to set the stage we first recall that g(z, n) admits an exponential Herglotz
representation [5] of the form

(3.1) g(z, n) = |g(i, n)| exp

{∫
R

[
1

λ− z
− λ

1 + λ2

]
ξ(λ, n)dλ

}
,

where, for all n ∈ Z,

0 ≤ ξ(λ, n) ≤ 1 for a.e. λ ∈ R,(3.2)

ξ(λ, n) = lim
ε↓0

Im{ln[g(λ+ iε, n)]} for a.e. λ ∈ R.(3.3)

One can normalize ξ(λ, n) by demanding

(3.4) ξ(λ, n) = 0 for λ < inf{σ(H)}.
Our principal spectral hypothesis on H then reads as follows.
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Hypothesis 3.1. (i). H is a bounded self-adjoint Jacobi operator. Hence its
spectrum can be written as

(3.5) σ(H) = R\
⋃

j∈J0∪{∞}

ρj ,

where J ⊆ N, J0 = J ∪ {0},
ρ0 = (−∞, E0), ρ∞ = (E∞,∞),

E0 ≤ E2j−1 < E2j ≤ E∞, ρj = (E2j−1, E2j), j ∈ J,
−∞ < E0 < E∞ <∞, ρj ∩ ρk = ∅ for j 6= k.

(3.6)

(ii). The set of all accumulation points of the set {E2j−1, E2j}j∈J is assumed to be
countable and denoted by

(3.7) A = {Ẽj}j∈J̃ , J̃ ⊆ N.

(iii). For all n ∈ Z,

(3.8) ξ(λ, n) =
1

2
for a.e. λ ∈ σess(H).

We emphasize that the notation employed in (3.6) implies that E2` = E2k+1

for some k ∈ J0 ∪ {∞} whenever E2` ∈ σd(H) (σd(.) abbreviating the discrete
spectrum).

Remark 3.2. (i). Since by hypotheses (3.5) and (3.6), σ(H) ⊂ [E0, E∞] is
bounded, the corresponding sequences {a(n) > 0}n∈Z and {b(n)}n∈Z ⊂ R associ-
ated with the difference expression (2.2) are necessarily bounded.
(ii). Hypothesis (H.3.1)(i) implies that σ(H) is a countable union of closed intervals
(which may degenerate to points) of the type,

σ(H) =

 ⋃
j∈J0

Σj

 ∪
⋃
j∈J̃

Σ̃j

 ,(3.9)

where

Σj = [E2j , E
(r)
2j ], j ∈ J0, Σ̃j = [Ẽj , Ẽ

(r)
j ], j ∈ J̃ ,(3.10)

with

x(r) = inf{En ∈ [E0, E∞]|x < En} for x ∈ [E0, E∞].(3.11)

Reflectionless conditions such as (3.8) have been used by a variety of authors for
particular cases such as almost periodic potentials (see, e.g., [2], [3], [11], [14], [25],
[34], [35]) and scattering theoretic situations (cf., e.g., [13], [16]). The following
result further illustrates (H.3.1)(iii).

Lemma 3.3. Suppose H is a bounded Jacobi operator and Ω ⊂ σ(H). Then the
following conditions are equivalent.

(i). For all n ∈ Z, ξ(λ, n) = 1
2 for a.e. λ ∈ Ω.

(ii). For some n0 ∈ Z, n1 ∈ Z\{n0, n0 + 1},

ξ(λ, n0) = ξ(λ, n0 + 1) = ξ(λ, n1) =
1

2
for a.e λ ∈ Ω.
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(iii). For some n0 ∈ Z,

M+(λ+ i0, n0) = −M−(λ+ i0, n0) for a.e. λ ∈ Ω.

Proof. Clearly (i) implies (ii). In order to prove that (ii) implies (iii) we first recall
that M±(z, n0), being Herglotz functions, have nontangential
limits z → λ for a.e. λ ∈ R. Next, consider a particular representation of
u±(z, n, n0) in (2.7) normalized by u±(z, n0, n0) = 1, z ∈ C\σ(H±,n0

), given by

(3.12) u±(z, n, n0) = c(z, n, n0)∓ a(n0)−1M±(z, n0)s(z, n, n0).

Here c(z, n, n0), s(z, n, n0) are solutions of τψ(z) = zψ(z), z ∈ C defined by

(3.13) s(z, n0, n0) = c(z, n0 + 1, n0) = 0, s(z, n0 + 1, n0) = c(z, n0, n0) = 1,

in particular, c(z, n, n0), s(z, n, n0) are polynomials with respect to z and real-

valued for z ∈ R. The requirement ξ(λ,m) = 1
2 , that is, g(λ+i0,m) = −g(λ+ i0,m)

for a.e. λ ∈ Ω then yields upon choosing m = n0,

(3.14) Re[M+(λ+ i0, n0)] = −Re[M−(λ+ i0, n0)] for a.e. λ ∈ Ω

and

[M+(λ+ i0, n0)M−(λ+ i0, n0)−M+(λ+ i0, n0)M−(λ+ i0, n0)]s(λ,m, n0)2

− {Im[M+(λ+ i0, n0)]− Im[M−(λ+ i0, n0)]}2ia(n0)c(λ,m, n0)s(λ,m, n0)

= 0 for a.e. λ ∈ Ω.
(3.15)

Taking m = n0 + 1 in (3.15) yields

M+(λ+ i0, n0)M−(λ+ i0, n0)−M+(λ+ i0, n0)M−(λ+ i0, n0)

(3.16)

= 0 = Re[M+(λ+ i0, n0)]{Im[M+(λ+ i0, n0)]− Im[M−(λ+ i0, n0)]}
for a.e. λ ∈ Ω

since s(λ, n0 + 1, n0) = 1. Taking m = n1 in (3.15) finally proves

(3.17) Im[M+(λ+ i0, n0)] = Im[M−(λ+ i0, n0)] for a.e. λ ∈ Ω

and hence (iii) since c(λ, n1, n0)s(λ, n1, n0) 6= 0 for a.e. λ ∈ R. (iii) implies (i)
by combining (2.3), (3.12), and the real-valuedness of c(λ, n, n0) and s(λ, n, n0) for
λ ∈ R. �

Next we turn to Dirichlet eigenvalues associated with τ corresponding to a Dirich-
let boundary condition at n ∈ Z. Associated with each spectral gap ρj we set

(3.18) µj(n) = sup{{E2j−1} ∪ {λ ∈ ρj |g(λ, n) < 0}} ∈ ρj , j ∈ J.
The strict monotonicity of g(λ, n) with respect to λ ∈ ρj , that is,

(3.19)
d

dλ
g(λ, n) =

∑
m∈Z

G(λ, n,m)2 > 0, λ ∈ ρj ,

then yields

g(λ, n) < 0, λ ∈ (E2j−1, µj(n)),
g(λ, n) > 0, λ ∈ (µj(n), E2j),

j ∈ J.(3.20)

A more detailed analysis of the exponential Herglotz representation (3.1) of
g(z, n) then yields
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Lemma 3.4. Assume (H.3.1)(i). Then

g(z, n) = |g(i, n)| exp

{∫
R

[
1

λ− z
− λ

1 + λ2

]
ξ(λ, n)dλ

}
=

−1

z − E∞
exp

{∫ E∞

E0

ξ(λ, n)dλ

λ− z

}

=
−1

(z − E0)1/2(z − E∞)1/2

∏
j∈J

[
z − µj(n)

(z − E2j−1)1/2(z − E2j)1/2

]
,

(3.21)

where the square root branch used is defined by

(3.22) z1/2 = |z1/2| exp[i arg(z)/2], −π < arg(z) ≤ π.

In particular, denoting by χΩ(.) the characteristic function of the set Ω ⊂ R, one
can represent ξ(λ, n) by

ξ(λ, n) =
1

2

[
χ(E0,∞)(λ) + χ(E∞,∞)(λ)

]
+

1

2

∑
j∈J

[
χ(E2j−1,∞)(λ) + χ(E2j ,∞)(λ)− 2χ(µj(n),∞)(λ)

]
=

1

2
χ(E0,E∞)(λ) +

1

2

∑
j∈J

[
χ(E2j−1,µj(n))(λ)− χ(µj(n),E2j)(λ)

]
+ χ(E∞,∞)(λ) for a.e. λ ∈ R.

(3.23)

For later purpose we observe that the Laurent expression of g(z, n) near 1
z = 0,

(3.24) g(z, n) = −1

z
− b(n)

z2
+ 0(z−3),

combined with (3.21) implies the trace formula (cf. [17])

(3.25) b(n) =
1

2
(E0 + E∞) +

1

2

∑
j∈J

[E2j−1 + E2j − 2µj(n)].

Next, we denote for all n ∈ Z,

γ±,j(n) = − lim
ε↓0

iεM±(µj(n) + iε, n) ≥ 0, j ∈ J,(3.26)

γj(n) = lim
ε↓0

iεg(µj(n) + iε, n)−1 = γ+,j(n) + γ−,j(n) ≥ 0, j ∈ J,(3.27)

γ̃±,j(n) = − lim
ε↓0

iεM±(Ẽj + iε, n) ≥ 0, j ∈ J̃ ,(3.28)

γ̃j(n) = lim
ε↓0

iεg(Ẽj + iε, n)−1 = γ̃+,j(n) + γ̃−,j(n) ≥ 0, j ∈ J̃ ,(3.29)

where we used the fact that by the Herglotz property of M±(z, n), −g(z, n)−1, the
limits in (3.26)–(3.29) exist and take on nonnegative values (cf. (3.38) and (3.39)).
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Associated with the limits (3.26)–(3.29) are the following ones (n ∈ Z),

σj(n) =

lim
ε↓0

h(µj(n) + iε, n) =
γ+,j(n)−γ−,j(n)

γj(n) ∈ [−1, 1] if γj(n) > 0

2 if γj(n) = 0
,(3.30)

σ̃j(n) =

lim
ε↓0

h(Ẽj + iε, n) =
γ̃+,j(n)−γ̃−,j(n)

γ̃j(n) ∈ [−1, 1] if γ̃j(n) > 0

2 if γ̃j(n) = 0
.(3.31)

The actual value of σj(n) (resp. σ̃j(n)) if γj(n) = 0 (resp. γ̃j(n) = 0) in (3.30)
(resp. (3.31)) is immaterial. For notational convenience later on, we chose a value
outside the interval [−1, 1] in this case.

We note that

(3.32) µj(n) 6∈ A implies γj(n) > 0.

Finally, we summarize the direct spectral problem in the following

Theorem 3.5. Assume (H.3.1) and let n ∈ Z. Then

(i).

σp(H±,n) =
{
µj(n) ∈ ρj |σj(n) ∈(−1,1]

[−1,1)

}
j∈J

∪
{
Ẽj ∈ A|σ̃j(n) ∈(−1,1]

[−1,1)

}
j∈J̃

.
(3.33)

(ii). If µj(n) ∈ σp(H) and
(∼)
γ +,j(n) > 0 (resp.

(∼)
γ −,j(n) > 0) then

(∼)
γ −,j(n) >

0 (resp. γ̃+,j(n) > 0), that is, if µj(n) ∈ σp(H) then µj(n) ∈ σp(H+,n) if
and only if µj(n) ∈ σp(H−,n).

(iii). The following cases may occur:

µj(n) ∈ ρj and σj(n) ∈ {−1, 1},
µj(n) ∈ σp(H) and σj(n) ∈ [−1, 1] implying that µj(n) ∈ σp(H±,n),

µj(n) = Ẽk and σj(n) = σ̃k(n).

Moreover, we have

(∼)
σ j(n) ∈ [−1, 1] if lim

ε↓0
iεg(

(∼)

E j + iε, n)−1 > 0,

(∼)
σ j(n) = 2 if lim

ε↓0
iεg(

(∼)

E j + iε, n)−1 = 0.

(iv).

σac(H) = σac(H±,n)

= {λ ∈ [E0, E∞]|ξ(λ, n0) = 1/2}
ess

for some n0 ∈ Z

=
⋃
j∈J

E2j 6=E(r)
2j

Σj ,
(3.34)

σsc(H) = σsc(H±,n) = ∅,(3.35)

σac(H) being of uniform spectral multiplicity two whereas σp(H),
σp(H±, n), and σac(H±,n) are all simple. In addition, if dν±,n denote the
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measures associated with the Herglotz representations of M±(z, n), that is,

M+(z, n) =

∫
R

dν+,n(λ)

λ− z
, M−(z, n) = z − b(n) +

∫
R

dν−,n(λ)

λ− z
,(3.36)

then

(3.37) dν+,n,ac = dν−,n,ac, dν±,n,sc = ∅.
dν±,n are both supported on infinite sets. (Here σac(.), σsc(.) abbrevi-
ate absolutely and singularly continuous spectra, respectively, dν = dνac
+ dνsc + dνpp denotes the usual Lebesgue decomposition of measures, and

A
ess

denotes the essential closure of A ⊂ R with respect to Lebesgue mea-
sure, i.e., A

ess
= {λ ∈ R|m(A ∩ (λ − ε, λ + ε)) > 0 for all ε > 0}, m(.)

denoting the Lebesgue measure.)

Proof. If F (z) denotes a Herglotz function with representation

(3.38) F (z) = cz + d+

∫
R

[
1

λ− z
− λ

1 + λ2

]
dω(λ), c ≥ 0, d ∈ R,

then

(3.39) ω({λ0}) = − lim
ε↓0

iεF (λ0 + iε) for all λ0 ∈ R

yields (i), taking into account (3.26)–(3.29).

In order to prove (ii) one can argue as follows.
(∼)
γ +,j(n) > 0 implies µj(n) ∈

σp(H+,n) by (2.16), (3.26), and (3.27) and
(∼)
γ j(n) > 0 yields

lim
ε↓0

εg(µj(n) + iε, n) = 0

by (3.27) and (3.29). Since µj(n) ∈ σp(H), (2.13), (2.15), (3.26), and (3.27) yield

(3.40) 0 <
(∼)
γ j(n) = − lim

ε↓0
iεg(µj(n) + iε, n+ 1) =

(∼)
γ +,j

(∼)
γ −,j

(∼)
γ +,j +

(∼)
γ −,j

.

Hence
(∼)
γ −,j > 0 and thus µj(n) ∈ σp(H−,n). Alternatively, one can

invoke the eigenfunction u+(µj(n),m) which then satisfies u+(µj(n), n) = 0, u+(µj(n), .) ∈
`2(Z) since µj(n) ∈ σp(H) ∩ σp(H+,n). The limit point property of H at ±∞ then
yields u−(µj(n), .) = Cu+(µj(n), .) for some constant C and again one concludes
that µj(n) ∈ σp(H−,n).

(iii) is clear from (3.30) and (3.31).
Next, define

Σ±,n,sc = {λ ∈ [E0, E∞]| lim
ε↓0

Im[m±(λ+ iε, n)] exists and equals +∞},(3.41)

Σsc = {λ ∈ [E0, E∞]| lim
ε↓0

Im[g(λ+ iε, n0) + g(λ+ iε, n0 + 1)]

exists and equals +∞} for some n0 ∈ Z.
(3.42)

Then Σ±,n,sc and Σsc are minimal supports (cf., e.g., [4], [21], [22], [32], [33]) of
dν±,n,sc and dνtrsc, where dνtr = dν1,1 + dν2,2 abbreviates the trace measure of the
2×2 matrix-valued spectral measure dνp,q, 1 ≤ p, q ≤ 2 of H (derived from g(z, n0),
g(z, n0 + 1), h(z, n0), cf. (2.12)–(2.14)). By (2.12) one has

(3.43) − g(z, n)−1 = M+(z, n) +M−(z, n)
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and by the reflectionless property (3.8),

(3.44) − lim
ε↓0

g(λ+ iε, n)−1 = 2i lim
ε↓0

Im[M±(λ+ iε, n)] for a.e. λ ∈ σess(H).

Consider

(3.45) σ(H)0 = (
⋃
j∈J0

Σ0
j ) ∪ (

⋃
j∈J̃

Σ̃0
j ), Σ0

j = (E2j , E
(r)
2j ), Σ̃0

j = (Ẽj , Ẽ
(r)
j ),

where A0 denotes the open interior of A ⊆ R. Then the representation (3.21) shows
that Σsc ∩ σ(H)0 = ∅. But σ(H)\σ(H)0 is countable by Hypothesis (H.3.1) and
hence σsc(H) = ∅. (3.44) then also yields Σ±,sc ∩ σ(H)0 = ∅ and σsc(H±,n) = ∅,
dν±,n,sc = 0 since σ(H±,n)\σ(H)0 is countable as well. Next, we recall that (n0 ∈
Z)

Σ±,ac = {λ ∈ [E0, E∞]|0 < lim
ε↓0

Im[M±(λ+ iε, n0)] <∞ exists},(3.46)

Σac = {λ ∈ [E0, E∞]|0 < lim
ε↓0

Im[g(λ+ iε, n0)] <∞ exists}(3.47)

are minimal supports of dν±,n,ac and dνtrac, respectively. By (3.44) one infers
dν+,n,ac = dν−,n,ac and hence (3.37). (3.34) then follows from (3.8), (3.44), (3.46),
(3.47), and Theorem 5.2 of [17] which states

(3.48) σac(H) = {λ ∈ [E0, E∞]|0 < ξ(λ, n0) < 1}
ess
.

Finally, spectral multiplicity two on σac(H) is a consequence of (3.8) and (3.44);
σp(H) is simple since H is in the limit point case at ±∞, and half-line spectra
σ(H±,n) are well-known to be simple. dν±,n are both supported on infinite sets
since H±,n are defined on the discrete half-lines Z ∩ (0,±∞). �

That H,H±,n have purely absolutely continuous spectra on σ(H)0 (cf. (3.45))
also follows from Theorem 3.1 in [27].

4. The Inverse Spectral Problem

In this section we describe our principal new result on the isospectral set of
self-adjoint Jacobi operators satisfying Hypothesis (H.3.1).

We start by introducing the following hypothesis.

Hypothesis 4.1. (i). Let

(4.1) Σ = R\
⋃

j∈J0∪{∞}

ρj ,

where J ⊆ N, J0 = J ∪ {0},
ρ0 = (−∞, E0), ρ∞ = (E∞,∞),

ρj = (E2j−1, E2j), E0 ≤ E2j−1 < E2j ≤ E∞, j ∈ J,
−∞ < E0 < E∞ <∞, ρj ∩ ρk = ∅ for j 6= k.

(4.2)

By Σd we denote the set of isolated (discrete) points of Σ.
(ii). The set A of all accumulation points of the set {E2j−1, E2j}j∈J is assumed

to be countable and denoted by

(4.3) A = {Ẽj}j∈J̃ , J̃ ⊆ N.
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(iii). We introduce the set {µj ∈ ρj}j∈J and define g(z) as in (3.21). In addition,
we introduce

(4.4) {(µj , σj) ∈ ρj × [−1, 1]}j∈J ,

where

σj ∈ {−1, 1} if µj ∈ ρj ,(4.5)

σj ∈ (−1, 1) if µj ∈ ∂ρj ∩ Σd. In this case(4.6)

µj = µk and σj = σk for some j 6= k ∈ J.

Next, we consider

(4.7) {(Ẽj , σ̃j) ∈ A× {[−1, 1] ∪ {2}}}j∈J̃ ,

where

σ̃j ∈ [−1, 1] if lim
ε↓0

iεg(Ẽj + iε)−1 > 0,

σ̃j = 2 if lim
ε↓0

iεg(Ẽj + iε)−1 = 0.
(4.8)

Finally,

(4.9) if µj = Ẽk for some j ∈ J, k ∈ J̃ , then σj = σ̃k.

(iv). If Σ = Σd, the index sets

(4.10) J± = {j ∈ J |σj ∈(−1,1]
[−1,1)} are infinite.

Remark 4.2. Conditions (i) and (ii) just reintroduce the necessary notation from
Hypothesis (H.3.1). (4.4)–(4.8) in condition (iii) takes care of items (ii) and (iii) in
Theorem 3.5. In particular, the fact that two Dirichlet eigenvalues must simultane-
ously hit a point in σd(H) is taken into account in (4.6). If only a single Dirichlet
eigenvalue µj would hit a point E∗ ∈ σd(H), then, since E∗ necessarily occurs twice

in the product (3.21), the term [z − µj ]/[(z − E∗)1/2(z − E∗)1/2] simply drops out
and one would have “lost” E∗. In other words, such a deformation of µj(n) would
be nonisospectral. (A detailed account of such (non)isospectral deformations will
appear in [19].) Condition (4.9) is a consistency requirement and condition (iv)
reflects the fact that we are working with infinite matrix operators on the discrete
half-lines Z ∩ (0,±∞).

Given Hypothesis (H.4.1) we define the set of Dirichlet and accumulation data

(4.11) DΣ = {{(µj , σj) ∈ ρj × [−1, 1]}j∈J , {σ̃j}j∈J̃ |assuming (H.4.1)}.

The isospectral set of self-adjoint reflectionless Jacobi operatorsH satisfying (H.3.1)
with σ(H) = Σ is denoted by

(4.12) I(Σ) = {Jacobi operators H in `2(Z)|σ(H) = Σ}.

Theorem 4.3. Suppose Σ satisfies (H.4.1). Then the map

(4.13)

{
I(Σ)→ DΣ

H → {{(µ◦j , σ◦j )}j∈J , {σ̃◦j }j∈J̃},
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constructed in Theorem 3.5 is a bijection, where

σ(H) = Σ,(4.14)

σp(H±,n0) = {µ◦j ∈ ρj |σ◦j ∈
(−1,1]
[−1,1)}j∈J ∪ {Ẽj ∈ A|σ̃

◦
j ∈

(−1,1]
[−1,1)}j∈J̃

for some n0 ∈ Z.(4.15)

Proof. We first show that the map (4.13) is surjective. Fix a point

(4.16) {{(µ◦j , σ◦j )}j∈J , {σ̃◦j }j∈J̃} ∈ DΣ.

We shall construct a unique Jacobi operator H ∈ I(Σ) satisfying (4.14) and (4.15).
Given (4.16), define g(z, n0) as in (3.21). Let νn0 be the measure in the Herglotz
representation of −g(z, n0)−1, that is

(4.17) − g(z, n0)−1 = z − b(n0) +

∫
R

dνn0(λ)

λ− z
,

with

(4.18) b(n0) =
1

2
(E0 + E∞) +

1

2

∑
j∈J

[E2j−1 + E2j − 2µ◦j ].

Next, we split up νn0
= ν+,n0

+ ν−,n0
as follows. Since the pure point part of νn0

is supported on {µ◦j ∈ ρj} we define

(4.19) ν±,n0({µ◦j}) =
1

2
(1± σ◦j )νn0({µ◦j})

and similarly,

(4.20) ν±,n0({Ẽj}) =
1

2
(1± σ̃◦j )νn0({Ẽj}).

(The split up of the pure point part in (4.19) resembles the one in Theorem 3.6 of [18]
in the case of Schrödinger operators with purely discrete spectra.) The absolutely
continuous part of νn0

is then split up according to Lemma 3.3, respectively (3.44),
by

(4.21) ν±,n0,ac =
1

2
νn0,ac.

We note that

(4.22) νn0,sc = ν±,n0,sc = 0

by the argument following (3.45). Next, define

(4.23) a(n0) =

[∫
R
dν+,n0

(λ)

]1/2

, a(n0 − 1) =

[∫
R
dν−,n0

(λ)

]1/2

and consider the probability measures

(4.24) ω+,n0 = a(n0)−2ν+,n0 , ω−,n0 = a(n0 − 1)−2ν−,n0

(which are both supported on infinite sets). ω±,n0 enable one to compute H±,n0 by
the moment approach as outlined, for instance, in [1], Ch. 4 and [7], Ch. 7. One
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obtains,

a(n) =

∫
R
λs±(λ, n, n0)s±(λ, n+ 1, n0)dω±,n0(λ), ±(n− n0) ≥

{
1

2
,

b(n) =

∫
R
λs±(λ, n, n0)2dω±,n0(λ), ±(n− n0) ≥ 1,

(4.25)

where s±(λ, n, n0), ±(n−n0) ≥ 1 are polynomials (of degree ±(n−n0)) orthonormal
with respect to dω±,n0

(λ). This determines H and (4.15). Introducing

M+(z, n0) = a(n0)2

∫
R

dω+,n0
(λ)

λ− z
,

M−(z, n0) = z − b(n0) + a(n0 − 1)2

∫
R

dω−,n0
(λ)

λ− z
,

(4.26)

one verifies (4.14) using (2.12), (2.14), and (2.15). It remains to show that the map
(4.13) is injective. Suppose H1 ∈ I(Σ) and H2 ∈ I(Σ) are both mapped to the
same point in (4.16). Then one infers ν±,1,n0 = ν±,2,n0 and b1(n0) = b2(n0) (where,
in obvious notation, ν±,j,n0 and bj refer to Hj , j = 1, 2) and hence H1 = H2. �

We conclude with a simple example illustrating an explicit construction to the
effect that an accumulation point of eigenvalues of H may or may not be an eigen-
value of H.

Example 4.4. Suppose H satisfies (H.3.1), H has pure point spectrum only, and

A 6= ∅. Let Ẽj0 ∈ A and define

γ̃j0 = lim
ε↓0

iεg(Ẽj0 + iε, 0)−1(4.27)

and

gδ(z, 0) = −[−g(z, 0)−1 − (δ − γ̃j0)(z − Ẽj0)−1]−1, δ ≥ 0.(4.28)

Then γ̃ ≥ 0 and gδ is a Herglotz function corresponding to a pure point measure
in its representation of the type (3.38). Computing the zeros µδ,j of gδ(z, 0) and
choosing σδ,j, σ̃δ,j ∈ [−1, 1]×{2} according to (H.4.1) yields a corresponding Jacobi
operator Hδ by Theorem 4.3. Since

(4.29) lim
ε↓0

iεgδ(Ẽj0 + iε, 0)−1 = δ,

one obtains the following case distinctions.

(i). δ = 0, then Ẽj0 ∈/σp(Hδ,±).

(ii). δ > 0, σ̃δ,j0 ∈ {±1}, then Ẽj0 ∈ σp(Hδ,σ̃δ,j0
), Ẽj0 ∈/σp(Hδ).

(iii). δ > 0, σ̃δ,j0 ∈ (−1, 1), then Ẽj0 ∈ σp(Hδ,±) ∩ σp(Hδ).

Case (i) is clear (in this case Ẽj0 may or may not belong to σp(H)). Case (ii)

follows from Theorem 3.5 (ii). In case (iii) one has limε↓0 εgδ(Ẽj0 + iε, 0) = 0 but

− limε↓0 iεgδ(Ẽj0 + iε, 1) > 0 in analogy to (3.40). Ẽj0 ∈ σp(Hδ) then follows from
(2.15).



ON ISOSPECTRAL SETS OF JACOBI OPERATORS 13

Acknowledgements.

F.G. would like to thank Barry Simon for numerous discussions and joint work
on inverse spectral problems which helped to shore up the foundations for this
paper. M.K. wishes to thank Walter Craig for discussions and the Departments of
Mathematics at Brown University and the University of Missouri-Columbia for an
invitation which made this work possible.

References

[1] N.I. Akhiezer, The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965.

[2] A.J. Antony and M. Krishna, Almost periodicity of some Jacobi matrices, Proc. Indian Acad.
Sci. (Math. Sci.) 102, 175–188 (1992).

[3] A.J. Antony and M. Krishna, Inverse spectral theory for Jacobi matrices and their almost

periodicity, Proc. Indian Acad. Sci. (Math. Sci.) 104, 777–818 (1994).
[4] N. Aronszajn, On a problem of Weyl in the theory of singular Sturm-Liouville equations,

Amer. J. Math. 79, 597–610 (1957).
[5] N. Aronszajn and W.F. Donoghue, On exponential representations of analytic functions in

the upper half-plane with positive imaginary part, J. Anal. Math. 5, 321–388 (1956-57).

[6] E.D. Belokolos, A.I. Bobenko, V.Z. Enol’skii, A.R. Its, and V.B. Matveev, Algebro-Geometric
Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994.
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