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Abstract. We consider essential self-adjointness on the space C∞
0 ((0,∞)) of

even order, strongly singular, homogeneous differential operators associated with
differential expressions of the type

τ2n(c) = (−1)n
d2n

dx2n
+

c

x2n
, x > 0, n ∈ N, c ∈ R,

in L2((0,∞); dx). While the special case n = 1 is classical and it is well-known
that τ2(c)

∣∣
C∞

0 ((0,∞))
is essentially self-adjoint if and only if c ≥ 3/4, the case

n ∈ N, n ≥ 2, is far from obvious. In particular, it is not at all clear from the
outset that

there exists cn ∈ R, n ∈ N, such that

τ2n(c)
∣∣
C∞

0 ((0,∞))
is essentially self-adjoint if and only if c ≥ cn.

(*)

As one of the principal results of this paper we indeed establish the existence
of cn, satisfying cn ≥ (4n− 1)!!

/
22n, such that property (*) holds.

In sharp contrast to the analogous lower semiboundedness question,

for which values of c is τ2n(c)
∣∣
C∞

0 ((0,∞))
bounded from below?,

which permits the sharp (and explicit) answer c ≥ [(2n − 1)!!]2
/
22n, n ∈ N, the

answer for (*) is surprisingly complex and involves various aspects of the geometry
and analytical theory of polynomials. For completeness we record explicitly,

c1 = 3/4, c2 = 45, c3 = 2240
(
214 + 7

√
1009

)/
27,

and remark that cn is the root of a polynomial of degree n− 1. We demonstrate
that for n = 6, 7, cn are algebraic numbers not expressible as radicals over Q (and
conjecture this is in fact true for general n ≥ 6).
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1. Introduction

Consider the 2nth-order differential expression

τ2n(c) = (−1)n
d2n

dx2n
+

c

x2n
, x ∈ (0,∞), n ∈ N, c ∈ R, (1.1)

and introduce the underlying preminimal and symmetric L2((0,∞); dx)-realization

τ2n(c)
∣∣
C∞

0 ((0,∞))
(1.2)

and its closure, the associated minimal operator T2n,min(c) in L2((0,∞); dx),

T2n,min(c) = τ2n(c)
∣∣
C∞

0 ((0,∞))
. (1.3)

The principal question to be posed and answered in this paper is the following:

For which values of c ∈ R is T2n,min(c) self-adjoint (equivalently,

for which values of c ∈ R is τ2n(c)
∣∣
C∞

0 ((0,∞))
essentially self-adjoint ) (1.4)

in L2((0,∞); dx)?

For the notion of (essentially) self-adjoint Hilbert space operators see, for instance,
[26, Sect. V.3], [38, Sect. VIII.2], [41, Sect. 3.2], and [48, Sects. 4.4, 5.3].

In the special case n = 1 it is well-known that the precise answer is (see, e.g.,
[42]),

(1.4) holds for n = 1 if and only if c ≥ c1 = 3/4. (1.5)

A priori it is not clear at all that this extends to n ∈ N, n ≥ 2, that is, it is not
obvious from the outset that

there exists cn ∈ R, n ∈ N, such that

τ2n(c)
∣∣
C∞

0 ((0,∞))
is essentially self-adjoint if and only if c ≥ cn.

(1.6)

Our principal new results, Theorem 4.5 and Corollary 4.7 assert that (1.6) indeed
holds for some cn ∈ R satisfying

cn ≥ (4n− 1)!!
/
22n, n ∈ N. (1.7)

The proof of the existence of cn in (1.6) (satisfying (1.7)) is surprisingly complex
and involves various aspects of the geometry and analytical theory of polynomials.
Explicitly, one obtains

c1 = 3/4, c2 = 45, c3 = 2240
(
214 + 7

√
1009

)/
27,

c4 = 2835

(
13711 +

190309441
3
√

2625188010911 + 1805760
√
−292868607

+
3

√
2625188010911 + 1805760

√
−292868607

) (1.8)

and we note that in this context that cn is the root of a polynomial of degree n−1. In
addition, we demonstrate that for n = 6, 7, cn are algebraic numbers not expressible
as radicals over Q; we conjecture that this actually continues to hold for general
n ≥ 6.
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Before explaining some of the strategy behind the proof of the existence of cn,
and for the purpose of comparison and exhibition of a sharp contrast to the essential
self-adjointness problem (1.6), we briefly record the precise borderline of semibound-
edness of the minimal operator T2n,min(c), which permits a remarkably simple and
explicit solution as follows:

T2n,min(c) is bounded from below, and then actually, T2n,min(c) ≥ 0, n ∈ N,

if and only if c ≥ − [(2n− 1)!!]2

22n
.

(1.9)

This is a consequence of the sequence of sharp Birman–Hardy–Rellich inequalities,
see Birman [5, p. 46] (see also Glazman [16, p. 83–84])∫ ∞

0
dx
∣∣f (n)(x)

∣∣2 ≥ [(2n− 1)!!]2

22n

∫ ∞

0
dxx−2n|f(x)|2,

f ∈ Cn
0 ((0,∞)), n ∈ N.

(1.10)

For more details on (1.10) see [15] and the extensive literature cited therein.
Returning to (1.6), our subject at hand, we recall that τ2n(c)

∣∣
C∞

0 ((0,∞))
is essen-

tially self-adjoint in L2((0,∞); dx) if and only if τ2n(c)
∣∣
C∞

0 ((0,∞))
is in the limit point

case at x = 0 and x = ∞. However, since for all c ∈ R, cx−2n is bounded on (ε,∞)
for all ε > 0, τ2n(c)

∣∣
C∞

0 ((0,∞))
is automatically in the limit point case at x = ∞

and hence it suffices to exclusively focus on whether or not τ2n(c)
∣∣
C∞

0 ((0,∞))
is in the

limit point case at x = 0.
In this context one observes that τ2n(c)

∣∣
C∞

0 ((0,∞))
is said to be in the limit point

case at an interval endpoint a ∈ {0,∞} if precisely n solutions of

τ2n(c)y(µ, · ; c) = µy(µ, · ; c), µ ∈ C\R (1.11)

(i.e., precisely half of the solutions) lie in L2(Ia; dx), where Ia is an interval of the
type I0 = (0, d) if a = 0, and I∞ = (d,∞) if a = ∞, for some fixed d ∈ (0,∞).

To decide the limit point property of τ2n(c)
∣∣
C∞

0 ((0,∞))
at x = 0, one next argues

that it is possible to choose µ = 0 in (1.11), restricting x to the interval I0 = (0, d),
which then leads to a special Euler-type equations which generically has solutions
of power-type

yj(0, x; c) = Cjx
αj(c), 1 ≤ j ≤ 2n, (1.12)

with αj(c), 1 ≤ j ≤ 2n, being the solutions of the underlying discriminant or indicial
equation,

D2n(z; c) =
2n∏
j=1

[z − (j − 1)] + (−1)nc = 0, z ∈ C. (1.13)

In exceptional cases, where some of the αk(c) coincide, (1.12) is replaced by

yk(0, x; c) = Ckx
αk(c)P (ln(x)), (1.14)

where P ( · ) is a polynomial of degree at most 2n − 1. Since we are interested
in whether or not yj(0, x; c) ∈ L2((0, d); dx) for some d ∈ (0,∞), the presence
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of logarithmic terms is irrelevant and the deciding L2-criterion for solutions of
τ2n(c)y(µ, · ; c) = 0 simply becomes

Re(αj(c)) > −1/2, for L2-membership,

respectively, Re(αj(c)) ≤ −1/2, for non-L2-membership.
(1.15)

In conclusion, to settle the essential self-adjointness problem (1.6) one needs to
establish the existence of cn ∈ R such that precisely n roots αj(c) of D2n( · ; c) = 0
satisfy Re(αj(c)) ≤ −1/2 for c ≥ cn. (Equivalently, precisely n roots αk(c) of
D2n( · ; c) = 0 satisfy Re(αk(c)) > −1/2 for c ≥ cn.)

Turning briefly to the content of each section, we note that Section 2 introduces
minimal and maximal operators associated with general differential expressions τ2n
of order 2n, n ∈ N, in L2((0,∞); dx) and reviews the underlying facts on deficiency
indices of the minimal operator T2n,min, including Kodaira’s decomposition princi-
ple. Section 3 discusses perturbed Euler differential systems and investigates the
underlying deficiency indices for the minimal operator associated with τ2n(c) in (1.1).
In addition, some of the basic theory of first-order systems in the complex domain
going back to Fuchs, Frobenius, and Sauvage, in versions championed by Hille and
Kneser, is summarized. Moreover, the special examples τ2(c) and τ4(c) are treated
explicitly. Properties of the (real part of the) roots αj(c) of D2n( · ; c) = 0 are the
center piece of our principal Section 4, culminating in Theorem 4.5 and Corollary
4.7 which settle the essential self-adjointness problem (1.6). The techniques involved
are related to the Grace–Haewood theorem [37, p. 126], the Routh–Hurwitz crite-
rion, and Orlando’s formula [12, § XV.7]. Appendix A shows with the help of Galois
theory that c6, c7 are algebraic numbers that cannot be expressed as radicals over
Q; we conjecture this actually remains the case for all cn, n ∈ N, n ≥ 6.

Finally, some remarks on the notation employed: We denote by CM×N ,M,N ∈ N,
the linear space of M ×N matrices with complex-valued entries. IN represents the
identity matrix in CN . The spectrum of a matrix (or closed operator in a Hilbert
space) T is denoted by σ(T ). The abbreviation N0 = N ∪ {0} is used.

2. The Deficiency Indices of T2n,min(c)

In this section we briefly recall the notions of deficiency indices and limit point, re-
spectively, limit circle cases associated with maximally defined differential operators,
generated by formally symmetric differential expressions τ2n on intervals (a, b) ⊆ R,
of even order 2n, n ∈ N, and then specialize the results to the particular case τ2n(c)
at hand. We will primarily follow [7, Sects. XIII.2, XIII.6], [33, Sects. 17.4, 17.5],
[49, Sects. 3, 4] and also refer to [2, § 126], [22], [23], [28], [29], [47, Chs. 2–4] for
relevant background material.

Assuming (a, b) ⊆ R we suppose that

pm, r are (Lebesgue) measurable and real-valued a.e. on (a, b), 0 ≤ m ≤ n,

pn > 0, r > 0 (Lebesgue) a.e. on (a, b), (2.1)

(1/pn), pm ∈ L1
loc((a, b); dx), 0 ≤ m ≤ n− 1,
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and introduce the quasi-derivatives

u[0] = u, u[m] = u(m), 0 ≤ m ≤ n− 1,

u[n] = pn
(
un−1

)′
,

u[n+1] = −
(
un
)′
+ pn−1u

n−1, (2.2)

u[n+j] = −
(
un+j−1

)′
+ pn−ju

n−j , 2 ≤ j ≤ n− 1,

u[2n] = −
(
u2n−1

)′
+ p0u = r(τ2nu).

Here the formally symmetric differential expression τ2n of order 2n is given by

(τ2nu)(x) =
n∑

m=0

(−1)m
(
pm(x)y(m)(x)

)(m)
, x ∈ (a, b). (2.3)

Given (2.1)–(2.3), the maximal L2((a, b); rdx)-realization (in short, the maximal
operator), T2n,max, associated with τ2n is then defined by

T2n,maxf = τ2nf,

f ∈ dom(T2n,max) =
{
g ∈ L2((a, b); rdx)

∣∣ g[ℓ] ∈ ACloc((a, b)), 0 ≤ ℓ ≤ 2n− 1;

τ2ng ∈ L2((a, b); rdx)
}
. (2.4)

Introducing the preminimal operator
.
T 2n,minf = τ2nf,

f ∈ dom
(
T2n,min

)
= {g ∈ dom(T2n,max) | supp (g) compact}

(2.5)

in L2((a, b); rdx), one can show that
.
T 2n,min is densely defined, symmetric, and

closable. Hence, defining the minimal operator in L2((a, b); rdx) associated with τ2n

as the closure of
.
T 2n,min,

T2n,min =
.
T 2n,min, (2.6)

one can prove the well-known fact

T ∗
2n,min = T2n,max, T ∗

2n,max = T2n,min, (2.7)

and thus T2n,max is closed. Moreover, if

pm ∈ Cm((a, b)), 0 ≤ m ≤ n, (2.8)

one can introduce ..
T 2n,min = τ2n

∣∣
C∞

0 ((a,b))
, (2.9)

and then also obtains
..
T 2n,min =

.
T 2n,min = T2n,min. (2.10)

Introducing the Lagrange bracket

[u, v]x =
n∑

j=1

[
u[j−1](x)v[2n−j](x)− u[2n−j](x)v[j−1](x)

]
, x ∈ (a, b), (2.11)
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one infers for (d, e) ⊂ (a, b) Lagrange’s identity via integrations by parts∫ e

d
r(x)dx

{
(τ2nu)(x)v(x)− u(x)(τ2nv)(x)

}
= [u, v]e − [u, v]d = [u, v]x

∣∣e
x=d

. (2.12)

Moreover, if u(µ, · ) and v(µ, · ) are solutions of

(τ2nu(µ, · ))(x) = µu(µ, x), (τ2nv(µ, · ))(x) = µv(µ, x), µ ∈ C, x ∈ (a, b),
(2.13)

then
d

dx
[u(µ, · ), v(µ, · )]x = 0, x ∈ (a, b). (2.14)

Finally, we also recall the known fact,

dom(T2n,min) = {g ∈ dom(T2n,max) | for all h ∈ dom(T2n,max):

[h, g]a = 0 = [h, g]b }.
(2.15)

In the following, the number of L2((a, b); rdx)-solutions u(µ±, · ) of
τ2nu(µ±, · ) = µ±u(µ±, · ), with ± Im(µ±) > 0, (2.16)

is denoted by n±(T2n,min) and called the deficiency indices of T2n,min. This notion
is well-defined as n±(T2n,min) is known to be constant throughout the open complex
upper and lower half-plane. As a result, one typically chooses µ± = ±i. Since the
coefficients of τ2n are real-valued, one obtains by a result of von Neumann [45] that

0 ≤ n+(T2n,min) = n−(T2n,min) ≤ 2n. (2.17)

Finally, given d ∈ (a, b), and denoting by T2n,min(max),(a,d) and T2n,min(max),(d,b)

the corresponding minimal or maximal operator with the interval (a, b) replaced by
(a, d) and (d, b), respectively, where d is now a regular endpoint for τ2n

∣∣
(a,d)

and

τ2n
∣∣
(d,b)

, one has (cf. [2, p. 483–484])

n+(T2n,min,(a,d)) = n−(T2n,min,(a,d)), n+(T2n,min,(d,b)) = n−(T2n,min,(d,b)),

n ≤ n±(T2n,min,(a,d)) ≤ 2n, n ≤ n±(T2n,min,(d,b)) ≤ 2n, (2.18)

and the Kodaira decomposition principle (see, e.g., [7, Corollary XIII.2.26], [33,
p. 72])

n±(T2n,min) = n±(T2n,min,(a,d)) + n±(T2n,min,(d,b))− 2n (2.19)

holds.

Remark 2.1. Given the fact that d ∈ (a, b) is a regular endpoint for τ2n|(a,d) and
τ2n|(d,b), the particular (and extreme) case where

n±(T2n,min,(a,d)) = n (resp., n±(T2n,min,(d,b)) = n) (2.20)

is the precise analog of Weyl’s limit point case at x = a (resp., x = b) in the classical
second order case n = 1, that is, for τ2|(a,d) (resp., τ2|(d,b)). Hence, we will apply this
limit point terminology also in the 2nth-order context in the following. In particular,
if

n±(T2n,min,(a,d)) = n = n±(T2n,min,(d,b)), (2.21)

then τ2n|(a,b) is in the limit point case at a and b and (2.19) yields accordingly that

n±(T2n,min) = 0 (2.22)
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in this case. Thus, (2.21), and hence (2.22), is equivalent to

T2n,min = T2n,max is self-adjoint in L2((a, b); rdx), (2.23)

which in turn is equivalent to
.
T 2n,min is essentially self-adjoint in L2((a, b); rdx). (2.24)

If in addition hypothesis (2.8) holds, then each of (2.21)–(2.24) is also equivalent to
..
T 2n,min is essentially self-adjoint in L2((a, b); rdx). (2.25)

All other cases, where 1 ≤ n±(T2n,min) ≤ 2n, describe various degrees of limit
circle cases of τ2n, with n±(T2n,min) = 2n representing the extreme case. ⋄

In the bulk of this paper we are particularly interested in the special case where

pn(x) = 1, pm(x) = 0, 1 ≤ m ≤ n− 1, p0(x) = cx−2n, r(x) = 1, x ∈ (0,∞),
(2.26)

that is, in the concrete example

τ2n(c) = (−1)n
d2n

dx2n
+

c

x2n
, x ∈ (0,∞), n ∈ N, c ∈ R, (2.27)

denoting the associated (pre)minimal and maximal operators in L2((0,∞); dx) by

T2n,min(c),
.
T 2n,min(c),

..
T 2n,min(c), T2n,max(c), etc.

In particular, we are interested in the question,

“for which values of c ∈ R is T2n,min(c) self-adjoint(
resp.,

..
T 2n,min(c) essentially self-adjoint

)
in L2((0,∞); dx)?”

(2.28)

3. Perturbed Euler Differential Systems and Their Deficienciy
Indices

In this section we will prove that it suffices to focus on the spectral parameter
µ = 0 when trying to determine the number of L2((0, d); dx)-solutions y(µ, · ) of

τ2n(c)y(µ, x) = (−1)ny(2n)(µ, x) + cx−2ny(µ, x) = µy(µ, x),

x ∈ (0, d), µ ∈ C, n ∈ N, c ∈ R,
(3.1)

for fixed d ∈ (0,∞) (e.g., one could simply choose d = 1). In particular, the
deficiency indices of the underlying minimal differential operator T2n,min(c) can be
determined from the knowledge of the number of L2((0, d); dx)-solutions of y(0, · ),
that is, one can reduce (3.1) to the far simpler case µ = 0.

To prove the µ-independence of the number of L2((0, d); dx)-solutions y(µ, · )
of (3.1), we find it convenient to employ a bit of the celebrated theory of regular
singular points (singular points of the first kind) for first-order systems of differential
equations in the complex domain, going back to G. Frobenius [9], L. Fuchs [10], [11],
and L. Sauvage [39], [40]. The theory is aptly summarized in a number of treatises,
we just mention [3, p. 17–36], [6, p. 108–135], [12, 148–164], [17, p. 70–92], [18,
p. 105–131], [19], [20, p. 182–198], [21, p. 342–352], [24, p. 356–372, Ch. XVI], [35,
Ch. V], [44, Ch. 4], and [46, 216–235].
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In the following ζ ∈ C\{0} (resp., ζ ∈ D(0;R)\{0} = {ζ ∈ C | 0 < |ζ| < R} for
some fixed R ∈ (0,∞)) represents the complex analog of x ∈ (0, d) in (3.1) and we
will study first-order systems of differential equations of the particular form

Y ′(ζ) = ζ−1A(ζ)Y (ζ), (3.2)

where Y ( · ) represents either an N ×1 solution vector or an N ×N solution matrix,
N ∈ N, which generally is multi-valued, and A( · ) is an N×N entire (resp., analytic
in D(0;R)) matrix-valued function,

A(ζ) =
∑
m∈N0

Am ζm. (3.3)

The very special structure (at most a first-order pole of the coefficient matrix at
z = 0) of the right-hand side of (3.2) then leads to a rather special structure of
solutions as described in the following.

As a warm up we briefly discuss the pure Euler situation where A( · ) is actually
a constant matrix A0 ∈ CN×N , that is, we consider

Y ′(ζ) = ζ−1A0Y (ζ), (3.4)

with fundamental (typically, many-valued) matrix solutions of the form

Y (ζ) = ζA0C = eA0 ln(ζ)C, (3.5)

where C ∈ CN×N is nonsingular (i.e., detCN (C) ̸= 0). Transforming A0 into its

Jordan normal form Â0 = TA0T
−1 for some nonsingular T ∈ CN×N , and setting

Ŷ ( · ) = TY ( · ) yields
Ŷ ′(ζ) = ζ−1Â0Ŷ (ζ), (3.6)

hence one can assume without loss of generality that A0 is in Jordan normal form.
In this case A0 is represented as a block diagonal matrix consisting possibly of a
diagonal matrix D and possibly of a number of nontrivial Jordan blocks of varying
r × r, 1 ≤ r ≤ N , sizes, denoted by Jr(αq). In particular, if Jr(αq) is of the form

Jr(αq) =


αq 1 0 · · · 0
0 αq 1 · · · 0
...

...
. . .

. . .
...

0 0 0 · · · 1
0 0 0 · · · αq

 , αq ∈ σ(A0), (3.7)

then

ζJr(αq) = ζαq


1 ln(ζ) [ln(ζ)]2/[2!] · · · [ln(ζ)]r−1/[(r − 1)!]
0 1 ln(ζ) · · · [ln(ζ)]r−2/[(r − 2)!]
...

...
. . .

. . .
...

0 0 0 · · · ln(ζ)
0 0 0 · · · 1

 , (3.8)

explicitly demonstrating the appearance of powers of logarithms of ζ in (3.5) in the
case where A0 has an eigenvalue αq whose algebraic multiplicity strictly exceeds
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its geometric one. In particular, the eigenvalues αq of A0 are determined via the
characteristic equation for A0, also called the indicial equation,

DN (z) = detCN (zIN −A0) = 0, z ∈ C. (3.9)

The general, or perturbed, Euler case (3.2) leads to analogous results as follows.

Theorem 3.1 (Hille [20], p. 192–198, Kneser [27]).
Given the matrix A( · ) ∈ CN×N in (3.3) entire (resp., analytic in D(0;R)), the
perturbed Euler differential system (3.2) has a fundamental set of (generally, multi-
valued ) solutions Yj ∈ CN×1, j = 1, . . . , N , of the form,

Yj(ζ; q) =
∑
m∈N0

pj,m,q(ln(ζ) ζ
m+αq , 1 ≤ j ≤ N, (3.10)

where αq runs through all distinct eigenvalues of A0 (i.e., all elements of σ(A0)),
determined via DN ( · ) = 0, and pj,m,q( · ) ∈ CN×1 are polynomials of degree less
than or equal to N − 1. The series in (3.10) converges for 0 < |ζ| < ∞ (resp., for
0 < |ζ| < R).

In this context we also refer to Sections 4.3, 4.4, particularly, Theorem 4.11, in
Teschl [44], for a succinct treatment of the Frobenius method for first-order systems
with a pole structure as in (3.2).

We also note that a fundamental matrix solution of (3.2) can be obtained in
analogy to (3.5) in the pure Euler case. In particular, under the spectral hypothesis
that

σ(A0) ∩ {σ(A0) + Z} = ∅, (3.11)

it was proven by Fuchs [11] (cf. Hille [21, Theorem 9.5.1]) that the perturbed Euler
differential system (3.2) has fundamental matrix solutions of the form

Y (ζ) =
∑
m∈N0

Cm ζmIN+A0C, C0 = IN , Cℓ ∈ CN×N , ℓ ∈ N, (3.12)

where again C ∈ CN×N is nonsingular.
The case where the spectral assumption (3.11) on A0 is violated is much more

involved1. What follows is a shortened description of Hille [21, Theorem 9.5.2], a
modified version of Frobenius’ method: If (3.11) does not hold, fundamental matrix
solutions of the perturbed Euler differential system (3.2) are of the form

Y (ζ) =
M∑
j=0

[ln(ζ)]j
∑
m∈N0

Cm,j ζ
mIN+A0C, C0,0 = [M !]IN , Cm,j ∈ CN×N , (3.13)

and once again C ∈ CN×N is nonsingular. A characterization of M in (3.13) is
possible, see, for instance, [21, p. 342–352].

We conclude this overview by specializing the 1st-order N ×N perturbed Euler
system (3.2) to the Nth-order scalar case (a special case of which is depicted in
(3.1)). Consider the scalar Nth-order differential equation

y(N)(ζ) + bN−1(ζ)y
(N−1)(ζ) + · · ·+ b1(ζ)y

′(ζ) + b0(ζ)y(ζ) = 0, (3.14)

1In fact, we quote Hille [21, p. 344] in this context: “. . . A number of arguments are available in
the literature all of them more or less corny. What I shall give here is not the corniest; . . . ”
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where the coefficients bj( · ), 0 ≤ j ≤ N − 1, are of the form

bj(ζ) = ζj−Naj(ζ), aj(ζ) =
∑
m∈N0

aj,m ζm, (3.15)

with aj( · ) entire (resp., analytic inD(0;R)). The scalar ODE (3.14) subordinates to
the perturbed Euler differential system (3.2) upon identifying A(ζ) with the N ×N
matrix

0 1 0 0 . . . 0
0 1 1 0 . . . 0
0 0 2 1 . . . 0
0 0 0 3 . . . 0
...

...
...

... . . .
...

...
...

...
... . . .

. . .
. . . 0

0 0 0 0 . . . 1
−a0(ζ) −a1(ζ) −a2(ζ) −a3(ζ) . . . (N − 1)− aN−1(ζ)


(3.16)

and identifying Y (ζ) with (Y1(ζ), . . . , YN (ζ)), where the solutions Yj( · ) ∈ CN×1 are
given by

Yj( · ) = (yj,1( · ), . . . , yj,N ( · ))⊤, yj,k(ζ) = ζk−1y
(k−1)
j (ζ), 1 ≤ j, k ≤ N, (3.17)

with yj( · ), 1 ≤ j ≤ N , linearly independent solutions of (3.14). In this scalar
context the matrix A0 ∈ CN×N in (3.3) is thus of the form

A0 =



0 1 0 0 . . . 0
0 1 1 0 . . . 0
0 0 2 1 . . . 0
0 0 0 3 . . . 0
...

...
...

... . . .
...

...
...

...
... . . .

. . .
. . . 0

0 0 0 0 . . . 1
−a0,0 −a1,0 −a2,0 −a3,0 . . . (N − 1)− aN−1,0


(3.18)

and hence the eigenvalues αq of A0 prominently figuring in the solution (3.10) are
determined via the indicial equation (3.9), DN ( · ) = 0, where

DN (z) = detCN (zIN −A0)

=

N∑
k=0

aN−k,0

{∏N−k
r=1 [z − (r − 1)], 0 ≤ k ≤ N − 1,

1, k = N,
aN,0 = 1, z ∈ C.

(3.19)

Given these results we can return to the half-line differential expression τ2n(c)
in (3.1), the special case of the scalar case (3.14) with N = 2n and (frequently
explicitly indicating the c-dependence of the coefficients)

bj(ζ; c) = 0, 1 ≤ j ≤ 2n− 1, b0(ζ; c) = (−1)nc ζ−2n − (−1)nµ, µ ∈ C, (3.20)
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equivalently,

aj(ζ; c) = 0, , 1 ≤ j ≤ 2n− 1, a0(ζ; c) = (−1)nc− (−1)nµ ζ2n, µ ∈ C. (3.21)

In this case the indicial equation further reduces to

D2n(z; c) =
2n∏
j=1

[z − (j − 1)] + (−1)nc = 0, z ∈ C. (3.22)

Thus, we can state the following result.

Theorem 3.2. Let c ∈ R, µ ∈ C. Then for any d ∈ (0,∞), the number of
L2((0, d); dx)-solutions of τ2n(c)y(µ, · ) = µy(µ; · ), denoted by #L2

(
τ2n(c)|(0,d)

)
, is

independent of µ. In particular,

n ≤ #L2

(
τ2n(c)|(0,d)

)
≤ 2n. (3.23)

Moreover, the deficiency indices n±(T2n,min(c)) (with T2n,min(c) representing the
closure of τ2n(c)

∣∣
C∞

0 ((0,∞))
in L2((0,∞); dx)) equal

n±(T2n,min(c)) = #L2

(
τ2n(c)|(0,d)

)
− n. (3.24)

and hence

0 ≤ n±(T2n,min(c)) ≤ n. (3.25)

In particular,

T2n,min(c) is self-adjoint
(
equivalently,

..
T 2n,min is essentially self-adjoint

)
in L2((0,∞); dx) if and only if #L2

(
τ2n(c)|(0,d)

)
= n.

(3.26)

Proof. The µ-independence of #L2

(
τ2n(c)|(0,d)

)
follows from the structure of the

solutions Yj in (3.10), the fact that for each d ∈ (0,∞), the power xα lies in
L2((0, d); dx) if and only if Re(α) > −1/2, independently of the presence of any
logarithmic factors, and finally that only the spectrum of A0 determines the powers
αq in (3.10).

Since c ∈ R, τ2n(c) possesses an anti-unitary conjugation operator (effected by
complex conjugation of elements in L2((0,∞); dx)) and one obtains by (2.17),

n+(T2n,min(c)) = n−(T2n,min(c)). (3.27)

Moreover by a special case of Kodaira’s decomposition principle (2.19) for deficiency
indices,

n±(T2n,min(c)) = n±

(
τ2n(c)

∣∣
C∞

0 ((0,d))

)
+ n±

(
τ2n(c)

∣∣
C∞

0 ((d,∞))

)
− 2n

= n±

(
τ2n(c)

∣∣
C∞

0 ((0,d))

)
− n

= #L2

(
τ2n(c)|(0,d)

)
− n, (3.28)

since

n±

(
τ2n(c)

∣∣
C∞

0 ((d,∞))

)
= n. (3.29)
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Relation (3.29) holds since τ2n(c) is regular at d and, as x−2n is bounded on the
interval [d,∞) (cf. [33, Sect. 14.7]), τ2n(c) is in the limit point case at ∞ since
(−1)nd2n/dx2n is in the limit point case at ∞. Moreover, by (2.18),

n ≤ n±

(
τ2n(c)

∣∣
C∞

0 ((0,d))

)
≤ 2n, (3.30)

implying (3.23) and (3.25). □

Remark 3.3. (i) The independence of #L2

(
τ2n(c)|(0,d)

)
with respect to µ permits

one to choose the by far simplest situation by taking µ = 0 when counting the
number of L2((0, d); dx)-solutions of τ2n(c)y(µ, · ) = µy(µ; · ). This in turn grants
one to focus on solutions of the simple power-type xα as in (3.10) (ignoring the
possibility of additional logarithmic factors which, however, cannot influence the
L2- or non-L2-behavior of solutions near x = 0). In particular, considering

yα(x) = xαP (ln(x)), x ∈ (0,∞), α ∈ C, (3.31)

where P ( · ) is any polynomial, then for all d ∈ (0,∞),

yα( · ) ∈ L2((0, d); dx) if and ony if Re(α) > −1/2. (3.32)

Thus, by (3.10), Re(α) > −1/2, respectively, Re(α) ≤ −1/2, is the criterion deciding
whether or not a particular solution with power-type behavior xα (again, ignoring
possible logarithmic factors) contributes to #L2

(
τ2n(c)|(0,d)

)
.

(ii) It will be shown in Corollary 4.8 that any permissible integer value for #(τ2n|(0,d))
in (3.23) actually is attained for some c ∈ R. ⋄

Remark 3.4. One observes that D2n( · ; c) possesses the symmetry

D2n(−(1/2) + n+ z) = D2n(−(1/2) + n− z). (3.33)

In particular, at z = 0 one obtains

D2n((−1/2)+n) = (−1)n

(
n∏

j=1

[j−1/2]2+ c

)
= (−1)n

(
[(2n− 1)!!]2

22n
+ c

)
. (3.34)

Consequently, for c = −[(2n− 1)!!]2
/
22n one has a double zero at α = k− (1/2) and

there are two solutions of the type

y1(0, x, c) = xk−(1/2), y2(0, x, c) = xk−(1/2) ln(x) (3.35)

in this case. ⋄

Next, we now recall the special situation n = 1 which is explicitly solvable for
general spectral parameter µ in terms of Bessel functions as follows:

Example 3.5. Assuming the case n = 1 in (3.1) we consider

−y′′(µ, x) + cx−2y(µ, x) = µy(µ, x),

µ ∈ C, x ∈ (0,∞), c ∈ R.
(3.36)

The associated characteristic equation

D2(z; c) = z(z − 1)− c = 0, (3.37)
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has the following two complex-valued solutions

α1(c) = (1/2)−
√
c+ (1/4),

α2(c) = (1/2) +
√

c+ (1/4),
(3.38)

choosing the principal branch for [ · ]1/2 with branch cut (−∞, 0], such that

z1/2 = r1/2eiφ/2, z = reiφ, r, r1/2 ∈ [0,∞), φ ∈ (−π, π]. (3.39)

With this convention in place one checks that for all c ∈ R, one has the ordering,

Re(α1(c)) ≤ 1/2 ≤ Re(α2(c)). (3.40)

(α) Generic case: Suppose c ∈ R is such that

[α1(c)− α2(c)]/2 ̸∈ Z. (3.41)

Then the nonhomogenous differential equation (3.36) has the following fundamental
system of solutions (cf. [1, No. 9.1.49, p. 362])

y1(µ, x; c) = (π/2)µ−γ(c)/2x1/2Jγ(c)
(
µ1/2x

)
,

y2(µ, x; c) = sin(πγ(c))µγ(c)/2x1/2J−γ(c)

(
µ1/2x

)
, (3.42)

µ ∈ C, x ∈ (0,∞),

where

γ(c) =
√

c+ (1/4), γ ∈ [0,∞), c ∈ R, (3.43)

(Thus, γ(c) ∈ {[0,∞)\N0} ∪ i(0,∞) in the generic case.)

(β) Exceptional Cases: Suppose c ∈ R is such that

[α1(c)− α2(c)]/2 ∈ Z, (3.44)

then

c = k2 − (1/4), k ∈ N0. (3.45)

More precisely, for k ∈ N0,

[α1(c)− α2(c)]/2 = ±k if and only if c = k2 − (1/4). (3.46)

Furthermore,

α1(c) = α2(c) if and only if c = −1/4. (3.47)

In the exceptional case, where γ(c) = k ∈ N0, one obtains

y1
(
µ, x; k2 − (1/2)

)
= (π/2)µ−k/2x1/2Jk

(
µ1/2x

)
,

y2
(
µ, x; k2 − (1/2)

)
= µk/2x1/2

[
− Yk

(
µ1/2x

)
+ π−1 ln(µ)Jk

(
µ1/2x

)]
, (3.48)

µ ∈ C, x ∈ (0,∞), c ∈
{
k2 − (1/4)

}
k∈N0

.

Here Jκ( · ) represent the standard Bessel functions of order κ ∈ C and first kind,
and Yk( · ) denotes the Bessel function of order k ∈ N0 and second kind (see, e.g.,
[1, Ch. 9]). Moreover, one verifies (cf. [1, p. 360]) that

W (y2(µ, · , c), y1(µ, · ; c)) = 1, µ ∈ C, c ∈ R (3.49)
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(here W (f, g) = fg′ − f ′g denotes the Wronkian of f and g), and that the funda-
mental system of solutions y1(µ, ·; c), y2(µ, ·, c) (3.42), (3.48) of (3.36) is entire with
respect to µ ∈ C for fixed x ∈ (0,∞), and real-valued for µ ∈ R.

As µ → 0, the fundamental systems of solutions (3.42), (3.48), upon disregarding
normalization, greatly simplify to

y1(0, x; c) = xα1(c), c ∈ R, y2(0, x; c) =

{
xα2(c), c ∈ R\{−1/4},
x1/2 ln(x), c = −1/4;

x ∈ (0,∞), (3.50)

underscoring once again the advantage of choosing µ = 0.
One observes that in accordance with (1.9) (see also (1.10)) and Remark 3.4, the

logarithmic case in (3.50) occurs at c = −1/4, that is, precisely at the borderline of
semiboundedness of Tmin,2(c).

Thus, determining whether or not Re(αj(c) > −1/2, j = 1, 2, one concludes that

#L2

(
τ2(c)|(0,d)

)
=

{
1, if c ≥ 3/4,

2, if c < 3/4.
(3.51)

Remark 3.6. In view of the next example, where n = 2, in fact, in view of the
general case n ∈ N, it might be interesting to rewrite the Bessel function solutions
in the case n = 1 in terms of the corresponding generalized hypergeometric func-
tion and Meijer’s G-function as follows: In the generic case, where c ∈ R is such
that [α1(c)− α2(c)]/2 ̸∈ Z, the nonhomogenous differential equation (3.36) has the
following fundamental system of solutions

y1(µ, x; c) = xα1(c)
0F1

(
1+

α1(c)−α2(c)
2

∣∣∣∣ − µx2

4

)
,

y2(µ, x; c) = xα2(c)
0F1

(
1+

α2(c)−α1(c)
2

∣∣∣∣ − µx2

4

)
, (3.52)

µ ∈ C, x ∈ (0,∞).

Here 0F1

(
b1

∣∣∣ ·
)
represents the generalized hypergeometric function given by

0F1

(
b1

∣∣∣ ζ) =
∑
k∈N0

ζk

(b1)kk!
, b1 ∈ C\{−N0}, ζ ∈ C, (3.53)

with (a)k denoting Pochhammer’s symbol,

(a)0 = 1, (a)k =
k−1∏
j=0

(a+ j) = Γ(a+ k)/Γ(a), k ∈ N, a ∈ C. (3.54)

In particular, 0F1

(
b1

∣∣∣ ζ) is entire in ζ ∈ C and

0F1

(
b1

∣∣∣ ζ) =
ζ→0

1 +O(ζ). (3.55)



STRONGLY SINGULAR, ORDINARY DIFFERENTIAL OPERATORS 15

In the exceptional case, where γ(c) = k ∈ N0, one obtains

y1
(
µ, x; k2 − (1/2)

)
= xk+(1/2)

0F1

(
1+k

∣∣∣∣ − µx2

4

)
,

y2
(
µ, x; k2 − (1/2)

)
= Γ(k + 1)2kµ−k/2x1/2G2,0

0,2

(
k/2;−k/2

∣∣∣∣ − µx2

4

)
(3.56)

+
[
π(−1)k+1ik+1 + ln(µ)

]
xk+(1/2)

0F1

(
1+k

∣∣∣∣ − µx2

4

)
,

µ ∈ C, x ∈ (0,∞), c ∈
{
k2 − (1/4)

}
k∈N0

.

Here Meijer’s G-function, G2,0
0,2

(
c1,c2

∣∣∣ · ), is given by a Mellin–Barnes-type integral,

G2,0
0,2

(
c1,c2

∣∣∣ ζ) =
1

2πi

∫
C
ds ζsΓ(c1 − s)Γ(c2 − s), (3.57)

where C is a contour beginning and ending at +∞ encircling all poles of Γ(cj − s),
j = 1, 2, once in negative orientation, and the left-hand side of (3.57) is defined as
the (absolutely convergent) sum of residues of the right-hand side. The exceptional
case where c1 and c2 differ by an integer is treated by a limiting argument. (For
more details see [13].) ⋄

For details on generalized hypergeometric functions and Meijer’s G-function we
refer, for instance, to [4], [8, Ch. IV, Sects. 5.3–5.6], [30, Ch. V], [31, Ch. V], and
[34, Ch. 16], [36, Sect. 8.2].

Example 3.7. Assuming the case n = 2 in (3.1) we consider

y′′′′(µ, x) + cx−4y(µ, x) = µy(µ, x),

x ∈ (0,∞), µ ∈ C, c ∈ R.
(3.58)

The associated characteristic equation

D4(z; c) = z(z − 1)(z − 2)(z − 3)− c = 0, z ∈ C, c ∈ R, (3.59)

has the following four complex-valued solutions,

α1(c) =

[
3−

√
5 + 4

√
1− c

]/
2,

α2(c) =

[
3−

√
5− 4

√
1− c

]/
2,

α3(c) =

[
3 +

√
5− 4

√
1− c

]/
2,

α4(c) =

[
3 +

√
5 + 4

√
1− c

]/
2; c ∈ R,

(3.60)

employing the principal branch (3.39) for [ · ]1/2. With this convention, one checks
that for all c ∈ R, one has

Re(α1(c)) ≤ Re(α2(c)) ≤ 3/2 ≤ Re(α3(c)) ≤ Re(α4(c)). (3.61)
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(α) Generic case: Suppose c ∈ R is such that

[αj(c)− αj′(c)]/4 ̸∈ Z, for all 1 ≤ j, j′ ≤ 4, j ̸= j′. (3.62)

Then the nonhomogenous differential equation (3.58) has the following fundamental
system of solutions,

y1(µ, x; c) = xα1(c)
0F3

(
1+

α1(c)−α2(c)
4

,1+
α1(c)−α3(c)

4
,1+

α1(c)−α4(c)
4

∣∣∣∣ µx4256

)
,

y2(µ, x; c) = xα2(c)
0F3

(
1+

α2(c)−α1(c)
4

,1+
α2(c)−α3(c)

4
,1+

α2(c)−α4(c)
4

∣∣∣∣ µx4256

)
,

y3(µ, x; c) = xα3(c)
0F3

(
1+

α3(c)−α1(c)
4

,1+
α3(c)−α2(c)

4
,1+

α3(c)−α4(c)
4

∣∣∣∣ µx4256

)
,

y4(µ, x; c) = xα4(c)
0F3

(
1+

α4(c)−α1(c)
4

,1+
α4(c)−α2(c)

4
,1+

α4(c)−α3(c)
4

∣∣∣∣ µx4256

)
;

(3.63)

µ ∈ C, x ∈ (0,∞).

Asymptotically,

yj(µ, x; c) =
x↓0

xαj(c)[1 +O(x)], 1 ≤ j ≤ 4, (3.64)

and thus, the four functions are indeed linearly independent.

Here 0F3

(
b1,b2,b3

∣∣∣ ·
)
represents the generalized hypergeometric function given

by

0F3

(
b1,b2,b3

∣∣∣ ζ) =
∑
k∈N0

ζk

(b1)k(b2)k(b3)kk!
, b1, b2, b3 ∈ C\{−N0}, ζ ∈ C. (3.65)

Again, 0F3

(
b1,b2,b3

∣∣∣ ζ) is entire in ζ ∈ C and

0F3

(
b1,b2,b3

∣∣∣ ζ) =
ζ→0

1 +O(ζ). (3.66)

That these functions are in fact solutions of (3.58) can be confirmed by direct
verification using the differential equation for generalized hypergeometric functions.

(β) Exceptional Cases: Suppose c ∈ R is such that

[αj(c)− αj′(c)]/4 ∈ Z for some 1 ≤ j, j′ ≤ 4, j ̸= j′, (3.67)

then

either c = 1− 20k2 + 64k4, or, c = −(9/16) + 10k2 − 16k4, k ∈ N0. (3.68)
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More precisely, for k ∈ N0,

[α1(c)− α2(c)]/4 = ±k implies c = 1− 20k2 + 64k4,

[α1(c)− α3(c)]/4 = ±k implies c = 1− 20k2 + 64k4,

(α1(c)− α4(c)]/4 = ±k implies c = −(9/16) + 10k2 − 16k4,

[α2(c)− α3(c)]/4 = ±k implies c = −(9/16) + 10k2 − 16k4,

(α2(c)− α4(c)]/4 = ±k implies c = 1− 20k2 + 64k4,

[α3(c)− α4(c)]/4 = ±k implies c = 1− 20k2 + 64k4.

(3.69)

Furthermore,

α1(c) = α2(c) if and only if α3(c) = α4(c) if and only if c = 1 (3.70)

and

α2(c) = α3(c) if and only if c = −9/16. (3.71)

If c = 1, then

α1(1) = α2(1) =
[
3−

√
5
]/
2, α3(1) = α4(1) =

[
3 +

√
5
]/
2, (3.72)

and a fundamental system of solutions is given by,

y1(µ, x; 1) = x[3−
√
5]/2

0F3

(
1,1−

√
5

4
,1−

√
5

4

∣∣∣∣ µx4256

)
,

y2(µ, x; 1) = G2,0
0,4

(
3−

√
5

8
, 3−

√
5

8
; 3+

√
5

8
, 3+

√
5

8

∣∣∣∣ µx4256

)
,

y3(µ, x; 1) = x[3+
√
5]/2

0F3

(
1,1+

√
5

4
,1+

√
5

4

∣∣∣∣ µx4256

)
,

y4(µ, x; 1) = G2,0
0,4

(
3+

√
5

8
, 3+

√
5

8
; 3−

√
5

8
, 3−

√
5

8

∣∣∣∣ µx4256

)
;

(3.73)

µ ∈ C, x ∈ (0,∞).

Asymptotically,

y2(µ, x; 1) =
x↓0

c2x
[3−

√
5]/2 ln(x)[1 +O(x)],

y4(µ, x; 1) =
x↓0

c4x
[3+

√
5]/2 ln(x)[1 +O(x)].

(3.74)

Here Meijer’s G-function, G2,0
0,4

(
c1,c2;c3,c4

∣∣∣ ·
)
, is again given by a Mellin–Barnes-

type integral,

G2,0
0,4

(
c1,c2;c3,c4

∣∣∣ ζ) =
1

2πi

∫
C
ds ζs

Γ(c1 − s)Γ(c2 − s)

Γ(1− c3 + s)Γ(1− c4 + s)
, (3.75)

where C is a contour beginning and ending at +∞ encircling all poles of Γ(cj − ·),
j = 1, 2, once in negative orientation, and the left-hand side of (3.75) is defined as
the (absolutely convergent) sum of residues of the right-hand side. The exceptional
case where c1 and c2 differ by an integer is once more treated by a limiting argument.
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If c = 1− 20k2 + 64k4, k ∈ N, then

α1

(
1− 20k2 + 64k4

)
=
[
3− 4k −

√
5− 16k2

]/
2,

α2

(
1− 20k2 + 64k4

)
=
[
3− 4k +

√
5− 16k2

]/
2,

α3

(
1− 20k2 + 64k4

)
=
[
3 + 4k −

√
5− 16k2

]/
2,

α4

(
1− 20k2 + 64k4

)
=
[
3 + 4k +

√
5− 16k2

]/
2,

(3.76)

and a fundamental system of solutions is given by,

y1
(
µ, x; 1− 20k2 + 64k4

)
= G2,0

0,4

(
3−4k−

√
5−16k2

8
, 3+4k−

√
5−16k2

8
; 3−4k+

√
5−16k2

8
, 3+4k+

√
5−16k2

8

∣∣∣∣ µx4256

)
,

y2
(
µ, x; 1− 20k2 + 64k4

)
= G2,0

0,4

(
3−4k+

√
5−16k2

8
, 3+4k+

√
5−16k2

8
; 3−4k−

√
5−16k2

8
, 3+4k−

√
5−16k2

8

∣∣∣∣ µx4256

)
,

y3
(
µ, x; 1− 20k2 + 64k4

)
(3.77)

= x[(3+4k)−
√
5−16k2 ]/2

0F3

(
1+k,1+k−

√
5−16k2

4
,1−

√
5−16k2

4

∣∣∣∣ µx4256

)
,

y4
(
µ, x; 1− 20k2 + 64k4

)
= x[(3+4k)+

√
5−16k2 ]/2

0F3

(
1+k,1+k+

√
5−16k2

4
,1+

√
5−16k2

4

∣∣∣∣ µx4256

)
;

µ ∈ C, x ∈ (0,∞).

Asymptotically,

y1
(
µ, x; 1− 20k2 + 64k4

)
=
x↓0

x[(3−4k)−
√
5−16k2 ]/2 ln(x)[1 +O(x)],

y2
(
µ, x; 1− 20k2 + 64k4

)
=
x↓0

x[(3−4k)+
√
5−16k2 ]/2 ln(x)[1 +O(x)].

(3.78)

If c = −9/16, then

α1(−9/16) =
[
3−

√
10
]/
2,

α2(−9/16) = α3(−9/16) = 3/2,

α4(−9/16) =
[
3 +

√
10
]/
2,

(3.79)
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and a fundamental system of solutions is given by,

y1(µ, x;−9/16) = x[3−
√
10]/2

0F3

(
1−

√
10
4

,1−
√
10
8

,1−
√
10
8

∣∣∣∣ µx4256

)
,

y2(µ, x;−9/16) = x3/2 0F3

(
1,1−

√
10
8

,1+
√
10
8

∣∣∣∣ µx4256

)
,

y3(µ, x;−9/16) = G2,0
0,4

(
3
8
, 3
8
; 3−

√
10

8
, 3+

√
10

8

∣∣∣∣ µx4256

)
,

y4(µ, x;−9/16) = x[3+
√
10]/2

0F3

(
1+

√
10
4

,1+
√
10
8

,1+
√
10
8

∣∣∣∣ µx4256

)
;

(3.80)

µ ∈ C, x ∈ (0,∞).

Asymptotically,

y3(µ, x,−9/16) =
x↓0

c3x
3/2 ln(x)[1 +O(x)]. (3.81)

One observes that the case c = −9/16, is again precisely the borderline of semi-
boundedness of Tmin,4(c) again in accordance with (1.9) (see also (1.10)) and Remark
3.4.

If c = −(9/16) + 10k2 − 16k4, k ∈ N, then

α1

(
− (9/16) + 10k2 − 16k4

)
= (3− 4k)/2,

α2

(
− (9/16) + 10k2 − 16k4

)
=
[
3−

√
10− 16k2

]/
2,

α3

(
− (9/16) + 10k2 − 16k4

)
=
[
3 +

√
10− 16k2

]/
2,

α4

(
− (9/16) + 10k2 − 16k4

)
= (3 + 4k)/2,

(3.82)

and a fundamental system of solutions is given by,

y1
(
µ, x;−(9/16) + 10k2 − 16k4

)
= G2,0

0,4

(
3−4k

8
, 3+4k

8
; 3−

√
10−16k2

8
, 3+

√
10−16k2

8

∣∣∣∣ µx4256

)
,

y2
(
µ, x;−(9/16) + 10k2 − 16k4

)
= x[3−

√
10−16k2 ]/2

0F3

(
8−2

√
10−16k2

8
, 8−4k−

√
10−16k2

8
, 8+4k−

√
10−16k2

8

∣∣∣∣ µx4256

)
,

y3
(
µ, x;−(9/16) + 10k2 − 16k4

)
(3.83)

= x[3+
√
10−16k2 ]/2

0F3

(
8+2

√
10−16k2

8
, 8−4k+

√
10−16k2

8
, 8+4k+

√
10−16k2

8

∣∣∣∣ µx4256

)
,

y4
(
µ, x;−(9/16) + 10k2 − 16k4

)
= x(3+4k)/2

0F3

(
1+k, 8+4k−

√
10−16k2

8
, 8+4k+

√
10−16k2

8

∣∣∣∣ µx4256

)
;

µ ∈ C, x ∈ (0,∞).
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Asymptotically,

y1(x) =
x↓0

c1x
(3−4k)/2[1 +O(x)] + c2x

(3+4k)/2 ln(x)[1 +O(x)]. (3.84)

Once more, as µ → 0, the fundamental system of solutions of (3.58) considerably
simplifies to

y1(0, x; c) = xα1(c), y2(0, x; c) = xα2(c),

y3(0, x; c) = xα3(c), y4(0, x; c) = xα4(c); c ∈ R\{1,−9/16},
(3.85)

y1(0, x; 1) = x[3−
√
5]/2, y2(0, x; 1) = x[3−

√
5]/2 ln(x),

y3(0, x; 1) = x[3+
√
5]/2, y4(0, x; 1) = x[3+

√
5]/2 ln(x), c = 1,

(3.86)

y1(0, x;−9/16) = x[3−
√
10]/2, y3(0, x;−9/16) = x3/2,

y3(0, x;−9/16) = x3/2 ln(x), y4(0, x;−9/16) = x[3+
√
10]/2, c = −9/16;

(3.87)

x ∈ (0,∞).

By inspection, one verifies that τ4(c)yj(0, · ; c) = 0, 1 ≤ j ≤ 4. Alternatively,
one can apply the theory of nth-order Euler differential equations as presented, for
instance, in [6, p. 122–123].

Thus, determining whether or not Re(αj(c) > −1/2, 1 ≤ j ≤ 4, one concludes
that

#L2

(
τ4(c)|(0,d)

)
=


2, if c ≥ 45,

4, if − (7!!)/24 ≤ c < 45,

3, if c < −(7!!)/24.

(3.88)

(Explicitly, (7!!)/24 = 105/16.)

Without going into further details we note that also the higher-order examples
n ∈ N, n ≥ 3, can be explicitly solved in terms generalized hypergeometric functions
and Meijer’s G-function (this will be discussed in [13]).

4. On the Real Part of the Roots of D2n( · ; c), c ∈ R

For n ∈ N and c ∈ R, let D2n( · ; c) be the polynomial given by (3.22) and note
that all of its coefficients are real. The goal of this section is to determine how many
of the roots of D2n( · ; c) have real part > −1/2. Results of this sort are typically
approached by using the Routh–Hurwitz criterion. We propose a different approach
here, even though Hurwitz’s ideas still play a central role.

Let us begin by fixing some notation. For c ∈ R, let the roots of D2n( · ; c) = 0
be denoted αj(c), j = 1, . . . , 2n. By the continuous dependence of the roots of a
polynomial on the coefficients (see [32, Theorem (1.4)]), we may choose our labelling
such that each αj(c) is a continuous function of c and

Re(α1(c)) ≤ Re(α2(c)) ≤ · · · ≤ Re(αn(c)) ≤ · · · ≤ Re(α2n(c)), c ∈ R. (4.1)

Note that Re(αj(0)) = αj(0) = j − 1 for j = 1, . . . , 2n. The fact that

D2n( · ; 0) has 2n distinct real roots > −1/2 (4.2)

will be of crucial importance in all that follows.
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Example 4.1. Figure 1 shows the graphs of the the real parts of the roots of D6( · ; c)
as functions of c ∈ R. The scale for the x-axis has been chosen such that x = c1/6

for c > 0 and x = sgn(c)|c|1/6 for c < 0. The dotted lines show the graphs of the
real parts of the roots of ( · )6 − c = 0 as functions of c. One notes that these dotted
lines are straight lines precisely because of our special choice of scale for the x-axis.
Furthermore, as c → ±∞, the graph of each function Re(αj(c)) approaches one of
these straight lines asymptotically. One observes that for c ≪ 0, one has Re(α1(c)) =
Re(α2(c)) < Re(α3(c)) = Re(α4(c)) < Re(α5(c)) = Re(α6(c)). Similarly, for c ≫ 0,
one infers that Re(α1(c)) < Re(α2(c)) = Re(α3(c)) < Re(α4(c)) = Re(α5(c)) <
Re(α6(c)).

As will be shown later, we have

Re(α1(c)) ≤ −1

2
iff c ≤

2240
(
214− 7

√
1009

)
27

≈ −693.0

or c ≥ 10395

64
≈ 162.4,

Re(α2(c)) ≤ −1

2
iff c ≤

2240
(
214− 7

√
1009

)
27

≈ −693.0

or c ≥
2240

(
214 + 7

√
1009

)
27

≈ 36201.2,

Re(α3(c)) ≤ −1

2
iff c ≥

2240
(
214 + 7

√
1009

)
27

≈ 36201.2,

(4.3)

where the algebraic numbers on the right are roots of the quadratic equation 27c2 −
958720c− 677376000 = 0. If j ∈ {4, 5, 6}, then Re(αj(c)) > −1/2 for all c ∈ R.

The proof of our main result, Theorem 4.5, concerning the real parts of the roots
of D2n( · ; c), c ∈ R, will depend on three lemmas. The first lemma states that for
any c ∈ R, the polynomial D2n( · ; c) cannot have more than two roots (counting
multiplicity) having the same real part. More precisely, we have the following result:

Lemma 4.2. For j, j′ ∈ {1, 2, . . . , 2n} and c ∈ R,
Re(αj(c)) = Re(αj′(c)) implies |j − j′| ≤ 1, (4.4)

Furthermore, if Re(αj(c)) = Re(αj′(c)) and |j − j′| = 1, then αj(c), αj′(c) ̸∈ R and

αj(c) = αj′(c).

Proof. Let c ∈ R and note that

d

dz
D2n(z; c) =

d

dz
(D2n(z; 0) + (−1)nc) =

d

dz
D2n(z; 0), z ∈ C. (4.5)

By (4.2)

all of the roots of the derivative of D2n( · ; 0) are real and simple, (4.6)

it follows that D2n( · ; c) does not have real roots of multiplicity greater than two.
Moreover, since c ∈ R, all roots of D2n( · ; c) are real or complex conjugates. Ar-
guing by contradiction, suppose the polynomial D2n( · ; c) has more than two roots
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Figure 1. Graphs of the the real parts of the roots of D6( · ; c) as
functions of c ∈ R.

(counting multiplicity) having the same real part. Then

there exist two roots z1, z2 ∈ C of D2n( · ; c) such that

Re(z1) = Re(z2) and 0 ≤ Im(z1) < Im(z2).
(4.7)

We now use the Grace–Heawood theorem to obtain a contradiction. More precisely,
we use the following corollary of (the proof of) the Grace–Heawood theorem, which
is stated on page 126 of [37] as a “Supplement”:

If z1, z2 ∈ C are two distinct roots of a complex polynomial of degree ≥ 2,
then neither of the two closed half-planes whose boundary is the perpendic-
ular bisector of the line segment [z1, z2] is devoid of any critical points of
the polynomial.
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When applied to the two roots z1, z2 of D2n( · ; c) as in the claim, this leads to a
contradiction as follows. Note that the perpendicular bisector of the line segment
[z1, z2] in our situation is of the form {z ∈ C | Im(z) = y0}, where y0 := [Im(z1) +
Im(z2)]/2 > 0. Now recall that by (4.6) all the critical points of D2n( · ; c) are real.
Thus, the closed half-plane {z ∈ C | Im(z) ≥ y0} would be devoid of any critical
points of D2n( · ; c). This is the desired contradiction. □

The second lemma is concerned with the asymptotic behavior of the real parts of
the roots of D2n( · ; c) as c → ±∞.

Lemma 4.3. For j ∈ {1, 2, . . . , 2n} and c ∈ R,

lim
c→+∞

Re(αj(c)) =

{
−∞, 1 ≤ j ≤ n,

+∞, n+ 1 ≤ j ≤ 2n,
(4.8)

and

lim
c→−∞

Re(αj(c)) =


−∞, 1 ≤ j ≤ n− 1,

n− (1/2), n ≤ j ≤ n+ 1,

+∞, n+ 2 ≤ j ≤ 2n.

(4.9)

Proof. For the purpose of this proof, let f(·) be the polynomial given by

f(z) := D2n(z + (n− (1/2)); 0), z ∈ C. (4.10)

The half-integer n− (1/2) is the center of mass of the roots of D2n( · ; 0) and hence
the center of mass of the roots of f( · ) is 0. In other words,

if we write f(z) =
∑2n

j=0 ajz
j , then a2n−1 = 0. (4.11)

For z0 ∈ C, it will be convenient to define polynomials f( · ; z0) and g( · ; z0) by

f(z; z0) := f(z)− z2n0 , g(z; z0) := z2n − z2n0 , z ∈ C. (4.12)

One notes that if z2n0 = (−1)n−1c, then f(z; z0) = D2n(z − (1/2); c) for all z ∈ C.
Next, let ε > 0. We claim that there exists a real number R > 0 such that if

|z0| > r, then the polynomial f(·; z0) has a unique root in the open disc U(z0; ε) :=
{z ∈ C | |z − z0| < ε}. Notice that g(·; z0) has a unique root in U(z0; ε), namely
z0, as long as |z0| is sufficiently large. Thus, one can use Rouché’s theorem as
follows. Let M := max{|a2n−2|, . . . , |a1|, |a0|}. If |z0| ≥ 1 + ε and z ∈ ∂U(z0; ε),
then 1 ≤ |z| ≤ |z0|+ ε and hence (keeping in mind (4.11))

|f(z; z0)− g(z; z0)| = |a2n−2z
n−2 + . . .+ a1z + a0|

≤ |a2n−2||z|2n−2 + · · ·+ |a1||z|+ |a0|
≤ M(|z|2n−2 + · · ·+ |z|+ 1)

≤ (2n− 1)M |z|2n−2

≤ (2n− 1)M(|z0|+ ε)2n−2.

(4.13)
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Furthermore, if |z0| ≥ 1+ε, then the minimum of |g(·; z0)| on the boundary ∂U(z0; ε)
is attained at z = (|z0| − ε)z0/|z0| and hence for every z ∈ ∂U(z0; ε) one has

|g(z; z0)| = |z2n − z2n0 | ≥ |(|z0| − ε)2n − |z0|2n|
= ε |(|z0| − ε)2n−1 + · · ·+ (|z0| − ε) + 1|.

(4.14)

One notes that if |z0| is sufficiently large, then

ε [(|z0| − ε)2n−1 + · · ·+ (|z0| − ε) + 1] > (2n− 1)M(|z0|+ ε)2n−2 (4.15)

since the left-hand side is a polynomial in |z0| of degree 2n−1 (with positive leading
coefficient) and the right-hand side is a polynomial in |z0| of degree 2n − 2 (with
positive leading coefficient.) Therefore, if |z0| is sufficiently large, then

|g(z; z0)| > |f(z; z0)− g(z; z0)| for every z ∈ ∂U(z0; ε) (4.16)

and hence, by Rouché’s theorem, f( · ; z0) and g( · ; z0) have the same number of
roots (counted with multiplicity) in U(z0; ε). It follows that there exists some R > 0
such that if |z0| > R, then f( · ; z0) has a unique root in the open disc U(z0; ε).

We can now complete the proof of Lemma 4.3. For c ∈ R, let the roots of

[z − (n− (1/2))]2n + (−1)nc = 0, z ∈ C, (4.17)

be denoted βj(c), j = 1, . . . , 2n. One can choose a labelling such that

Re(β1(c)) ≤ Re(β2(c)) ≤ · · · ≤ Re(βn(c)) ≤ · · · ≤ Re(β2n(c)), c ∈ R. (4.18)

There is a statement analogous to Lemma 4.2 for the roots βj(c), j = 1, . . . , 2n. In
light of this, there is a “canonical” labeling for both the roots αj(c) and βj(c) such
that if 1 ≤ j < 2n and Re(αj(c)) = Re(αj+1(c)) [resp. Re(βj(c)) = Re(βj+1(c))],
then Im(αj(c)) < Im(αj+1(c)) [resp. Im(βj(c)) < Im(βj+1(c))]. The roots of
(4.17) are trivial to determine and a straightforward (but somewhat tedious) analysis
shows that the asymptotic behavior of Re(βj(c)) as c → ±∞ is given by (4.8) and
(4.9), respectively, with αj(c) replaced by βj(c), j = 1, 2 . . . , 2n.

Now for ε > 0 and |c| ≫ 0, by the Rouché argument from above applied to
z0 = βj(c),

|αj(c)− βj(c)| < ε, j = 1, 2 . . . , 2n. (4.19)

Therefore, the asymptotic behavior of Re(βj(c)) as c → ±∞ is given by (4.8) and
(4.9), respectively. □

Finally, the last lemma is related to the Routh–Hurwitz criterion, adapted to our
situation. This takes some preparation. For c ∈ R, one first expandsD2n(z−(1/2); c)
as a polynomial in z,

D2n(z − (1/2); c) = q2nz
2n + q2n−1z

2n−1 + · · ·+ q1z +
[
q0 + (−1)nc

]
, (4.20)
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and then considers the associated (2n× 2n) Hurwitz matrix,

H2n(c) :=



q2n−1 q2n−3 q2n−5 · · · 0 0 0

q2n q2n−2 q2n−4
. . .

...
...

...

0 q2n−1 q2n−3
. . .

...
...

...
... q2n q2n−2 0

...
...

... 0 q2n−1 q0+(−1)nc
...

...
...

... q2n q1 0
...

...
... 0 q2 q0+(−1)nc

...
...

...
... q3 q1 0

0 0 0 · · · q4 q2 q0+(−1)nc



. (4.21)

One notes that qj ∈ Q for all j ∈ {0, 1, . . . , 2n}. Furthermore, observe that c only
occurs in the even rows. This implies that the function det (H2n( · )) is a polynomial
of degree n with rational coefficients. By Laplace expansion along the last column,

det (H2n(c)) = [q0 + (−1)nc]hn−1(c), (4.22)

where hn−1( · ) is a polynomial of degree n − 1 with rational coefficients. There
is a simple closed expression for q0, which is reminiscent of the expression on the
right-hand side of (1.9):

q0 =
(4n− 1)!!

22n
. (4.23)

Formula (4.23) is easily proved by induction using that

q0 = D2n(−1/2; 0) =

2n∏
j=1

[j − (1/2)]. (4.24)

Lemma 4.4. For j ∈ {1, 2, . . . , 2n} and c ∈ R, if Re(αj(c)) = −1/2, then

det(H2n(c)) = 0, (4.25)

that is,
c = (−1)n−1q0, or, hn−1(c) = 0, (4.26)

where hn−1( · ) is given by (4.22).

Proof. Note that the roots of the polynomial (4.20) are just the roots of D2n( · ; c)
shifted by 1/2, that is, roots of the polynomial (4.20) are αj(c) + (1/2), where
j ∈ {1, 2, . . . , 2n}. It then follows from Orlando’s formula (see [12, § XV.7]) that

hn−1(c) =
∏

1≤j1<j2≤2n

{[αj1(c) + (1/2)] + [αj2(c) + (1/2)]}. (4.27)

Next, let j ∈ {1, 2, . . . , 2n} and c ∈ R such that Re(αj(c)) = −1/2. First suppose
αj(c) ∈ R. Then αj(c) = −1/2 and D2n(−1/2; c) = D2n(−1/2; 0) + (−1)nc = 0,
which implies that c = (−1)n−1q0. Next suppose αj(c) ̸∈ R. By Lemma 4.2, there

exists some j′ ∈ {1, 2, . . . , 2n}, j ̸= j′, such that αj′(c) = αj(c). Then [αj(c) +
(1/2)] + [αj′(c) + (1/2)] = 0 and hence hn−1(c) = 0 by (4.27). □
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We now have all the necessary ingredients to prove the main result of this section,
Theorem 4.5. In this context we will use the floor and ceiling notation: One recalls
that for n ∈ N, ⌊n/2⌋ denotes the greatest integer less than or equal to n/2; similarly,
⌈n/2⌉ denotes the least integer greater than or equal n/2. Thus, for n ∈ N, one has

⌈n/2⌉ =

{
⌊n/2⌋+ 1 = (n+ 1)/2 if n is odd,

⌊n/2⌋ = n/2 if n is even.
(4.28)

Recalling Remark 3.3 (i), one obtains for c ∈ R, d ∈ (0,∞),

#
(
τ2n(c)|(0,d)

)
= the number of j ∈ {1, 2, . . . , 2n} such that Re(αj(c)) > −1/2.

(4.29)

Theorem 4.5. (i) For every n ∈ N, n ≥ 2, there exist n real constants

c(1)n < c(2)n < · · · < c(n)n (4.30)

such that the following items (a)–(c) hold:

(a) For c ∈ R, d ∈ (0,∞), one has

#
(
τ2n(c)|(0,d)

)
=



n, if c ≥ c
(n)
n ,

n+ 2(n− k), if c
(k)
n ≤ c < c

(k+1)
n and ⌊n/2⌋ < k ≤ n− 1,

2n, if c
(k)
n < c < c

(k+1)
n and k = ⌊n/2⌋,

n+ 2k + 1, if c
(k)
n < c ≤ c

(k+1)
n and 1 ≤ k < ⌊n/2⌋,

n+ 1, if c ≤ c
(1)
n .

(4.31)

(b) The constant c
(⌈n/2⌉)
n is given by the formula

c(⌈n/2⌉)n = (−1)n−1 (4n− 1)!!

22n
. (4.32)

(c) The constants c
(1)
n , c

(2)
n , . . . c

(⌈n/2⌉−1)
n , c

(⌈n/2⌉+1)
n , . . . , c

(n)
n are the roots of the

polynomial hn−1( · ) of degree n− 1 with rational coefficients. In addition,

c(n)n ≥ (4n− 1)!!

22n
=

n→∞
21/2(2/e)nn2n[1 +O(1/n)]. (4.33)

(ii) For n = 1 one obtains

#
(
τ2(c)|(0,d)

)
=

{
1, if c ≥ 3/4,

2, if c < 3/4.
(4.34)

Proof. (i) The constants c
(1)
n , . . . , c

(n)
n will turn out to be the roots of the polynomial

det(H2n( · )) of degree n given by (4.21). However, it is not clear, a priori, that
det(H2n( · )) has n distinct real roots. For that reason, we will have to define our
constants differently.
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Next, we recall that the polynomial D2n( · ; 0) has 2n distinct real roots, namely
the non-negative integers αj(0) = j − 1, where j ∈ {1, 2 . . . , 2n}. In particular,
Re(αj(0)) > −1/2 for all j ∈ {1, 2 . . . , 2n}. By Lemma 4.3, if 1 ≤ j ≤ n − 1, one
has limc→−∞Re(αj(c)) = −∞ and hence {c < 0 |Re(αj(c)) = −1/2} is nonempty
by continuity; similarly, if 1 ≤ j ≤ n, then limc→∞Re(αj(c)) = −∞ and hence
{c > 0 |Re(αj(c)) = −1/2} is nonempty by continuity. Now, for 1 ≤ k ≤ n, define

c(k)n :=

{
min{c ∈ R |Re(αn−2k+1(c)) = −1/2} if 1 ≤ k ≤ ⌊n/2⌋

max{c ∈ R |Re(α2(k−⌊n/2⌋)−1(c)) = −1/2} if ⌊n/2⌋ < k ≤ n.
(4.35)

One notes that if 1 ≤ k ≤ ⌊n/2⌋, then 1 ≤ n−2k+1 ≤ n−1 and c
(k)
n < 0; similarly,

if ⌊n/2⌋ < k ≤ n, then 1 ≤ 2(k − ⌊n/2⌋) − 1 ≤ n and c
(k)
n > 0. By (4.1), we then

obtain

c(1)n ≤ c(2)n ≤ · · · ≤ c(⌊n/2⌋)n < 0 < c(⌊n/2⌋+1)
n ≤ · · · ≤ c(n−1)

n ≤ c(n)n (4.36)

Next we use Lemma 4.2 to show that all the inequalities in (4.36) are strict. Sup-

pose c
(k)
n = c

(k+1)
n for some 1 ≤ k ≤ ⌊n/2⌋ − 1. Then Re(αn−2k+1(c

(k)
n )) =

Re(αn−2k−1(c
(k)
n )) and since |(n − 2k + 1) − (n − 2k − 1)| = 2 > 1, this contra-

dicts (4.4). The same argument also yields a contradiction if c
(k)
n = c

(k+1)
n for some

⌊n/2⌋ < k ≤ n− 1. Therefore, all the inequalities in (4.36) are strict.

We can say a bit more about the constants c
(⌊n/2⌋)
n and c

(⌊n/2⌋+1)
n .

Claim 4.6. We have

c(⌊n/2⌋)n ≤ −q0 < 0 < q0 ≤ c(⌊n/2⌋+1)
n , (4.37)

where q0 = D2n(−1/2; 0) as in (4.24).

By (4.36) and the discussion leading up to it, the claim follows if we show that for
c ∈ R, the polynomial D2n( · ; c) has no roots with real part equal −1/2 if |c| < q0.
To prove the latter, we will use a simple argument due to Tallis and Gordon [43,
Theorem 1(a)]. Consider the polynomial f( · ) given by f(z) := D2n(z − (1/2); 0),
z ∈ C. By (3.22),

f(z) =
2n∏
j=1

[(z − (1/2))− (j − 1)] =

2n∏
j=1

[z − (j − (1/2))] , z ∈ C. (4.38)

Note that D2n( · ; c) has a root with real part equal −1/2 if and only if f( · )+(−1)nc
has a root on the imaginary axis. Suppose f(ib)+ (−1)nc = 0 for some b ∈ R. Then

|c| = |f(ib)| =
2n∏
j=1

|ib− (j − (1/2))| ≥
2n∏
j=1

[j − (1/2)] = q0, (4.39)

which proves Claim 4.6.
Combining (4.36) and (4.37) implies

c(n)n ≥ q0 =
(4n− 1)!!

22n
=

Γ(4n)

24n−1Γ(2n)
. (4.40)
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Stirling’s formula (see, e.g., [1, No. 6.1.37]),

Γ(z) =
z→∞

| arg(z)|<π

(2π)1/2e−zzz−(1/2)[1 +O(1/z)], (4.41)

then yields (4.33).

By Lemma 4.4, det
(
H2n

(
c
(k)
n

))
= 0 for every 1 ≤ k ≤ n. Since the constants

c
(k)
n are distinct and since det(H2n( · )) is a polynomial of degree n, the polynomial

det(H2n( · )) does not have any other roots. Furthermore, one of the constants c
(k)
n

must by equal to (−1)n−1q0 and the other n − 1 constants must be the roots of
the polynomial hn−1( · ), see (4.22). If n is odd, then (−1)n−1q0 = q0 > 0 and

it follows from (4.37) and (4.36) that c
(⌊n/2⌋+1)
n = q0; similarly, if n is even, then

(−1)n−1q0 = −q0 < 0 and it follows from (4.37) and (4.36) that c
(⌊n/2⌋)
n = −q0.

In either case, in light of (4.28), we have c
(⌈n/2⌉)
n = (−1)n−1q0. Thus, recalling the

formula for q0 from (4.23), we obtain (4.32). This completes the proof of parts (b)
and (c) of Theorem 4.5.

Before we prove part (a), we recall that by the continuity argument given in the
first paragraph of this proof, for every 1 ≤ j ≤ n − 1, there exists some c < 0
such that Re(αj(c)) = −1/2. By our observations above, this c must be one of the

constants c
(k)
n with 1 ≤ k ≤ ⌊n/2⌋. Similarly, for every 1 ≤ j ≤ n, there exists some

c > 0 such that Re(αj(c)) = −1/2 and, by our observations above, this c must be

one of the constants c
(k)
n with ⌊n/2⌋+ 1 ≤ k ≤ n.

We will now prove part (a) in the case when n is odd. Then n − 1 is even
and n − 1 = 2⌊n/2⌋ = 2(n − ⌈n/2⌉). By Lemma 4.2 and since n − 1 = 2⌊n/2⌋,
for every 1 ≤ k ≤ ⌊n/2⌋, there are exactly two distinct j, j′ ∈ {1, 2 . . . , n − 1}
such that Re

(
αj

(
c
(k)
n

))
= Re

(
αj′
(
c
(k)
n

))
. Furthermore, c

(⌊n/2⌋+1)
n = c

(⌈n/2⌉)
n = q0

and α1

(
c
(⌈n/2⌉)
n

)
= −1/2 ∈ R. By Lemma 4.2 and since n − 1 = 2(n − ⌈n/2⌉),

for every ⌈n/2⌉ + 1 ≤ k ≤ n , there are exactly two distinct j, j′ ∈ {2, 3 . . . , n}
such that Re

(
αj

(
c
(k)
n

))
= Re

(
αj′
(
c
(k)
n

))
. The resulting situation is summarized in

Figure 2(a). We now use Figure 2(a) to understand how the value of #
(
τ2n(c)|(0,d)

)
changes with c ∈ R. For c ≤ c

(1)
n , Figure 2(b) shows that Re(αj(c)) > −1/2 if

and only if n ≤ j ≤ 2n. Therefore, #
(
τ2n(c)|(0,d)

)
= n + 1 for c ≤ c

(1)
n . As c

increases beyond c
(1)
n , the value of #

(
τ2n(c)|(0,d)

)
jumps from n + 1 to n + 3 since

for c
(1)
n < c ≤ c

(2)
n , Re(αj(c)) > −1/2 if and only if n − 2 ≤ j ≤ 2n (assuming

that n ≥ 3). As c increases more, the value of #
(
τ2n(c)|(0,d)

)
increases by 2 each

time c crosses one of the constants c
(k)
n until c reaches c

(⌊n/2⌋)
n ), when the value

#
(
τ2n(c)|(0,d)

)
only increases by 1 from 2n − 1 to 2n. From then on, the value of

#
(
τ2n(c)|(0,d)

)
starts decreasing by 2 each time c moves beyond one of the constants

c
(k)
n until, finally, c passes c

(n)
n , and we have #

(
τ2n(c)|(0,d)

)
= n since for c ≥ c

(n)
n ,

Re(αj(c)) > −1/2 if and only if n+1 ≤ j ≤ 2n. The result is the piecewise-formula
for #

(
τ2n(c)|(0,d)

)
stated in part (a).
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In the case when n is even, the argument is, mutatis mutandis, the same. The
situation is summarized in Figure 2(b). The result is the same piecewise-formula
for #

(
τ2n(c)|(0,d)

)
stated in part (a).

(ii) This has been discussed in Example 3.5. □

Re(αn−1(c))
Re(αn−2(c))

· · · Re(α2(c))
Re(α1(c))

Re(α1(c)) Re(α3(c))
Re(α2(c))

· · · Re(αn(c))
Re(αn−1(c))

c

Re(αj(c))

c
(1)
n · · · c

(⌊n/2⌋)
n c

(⌈n/2⌉)
n c

(⌈n/2⌉+1)
n · · · c

(n)
n

(a) n odd

Re(αn−1(c))
Re(αn−2(c))

· · · Re(α3(c))
Re(α2(c))

Re(α1(c)) Re(α2(c))
Re(α1(c))

Re(α3(c))
Re(α2(c))

· · · Re(αn(c))
Re(αn−1(c))

c

Re(αj(c))

c
(1)
n · · · c

(⌊n/2⌋−1)
n c

(⌊n/2⌋)
n c

(⌊n/2⌋+1)
n c

(⌊n/2⌋+2)
n · · · c

(n)
n

(b) n even

Figure 2. The constants c
(k)
n

Corollary 4.7. For every n ∈ N, there exists a positive constant cn ∈ R such that{
c ∈ R

∣∣# (τ2n(c)|(0,d)) = n
}
= [cn,∞), (4.42)

and thus,

T2n,min(c) is self-adjoint
(
equivalently,

..
T 2n,min is essentially self-adjoint

)
in L2((0,∞); dx) if and only if c ≥ cn.

(4.43)

In addition,

c1 = 3/4, cn = c(n)n ≥ (4n− 1)!!

22n
, n ∈ N, n ≥ 2 (4.44)

(see (4.30), (4.31), and (4.40)).

Put differently, Corollary 4.7 asserts there exist no “islands” (i.e., intervals or
its degeneration to points) of non-essential self-adjointness for τ2n(c)

∣∣
C∞

0 ((0,∞))
for

c ≥ cn.
We explicitly record the following exact expressions:

c1 = 3/4,

c2 = 45,
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c3 = 2240
(
214 + 7

√
1009

)/
27 ≈ 36201.1645283357,

c4 = 2835

(
13711 +

190309441
3
√
2625188010911 + 1805760

√
−292868607

+
3

√
2625188010911 + 1805760

√
−292868607

)
(4.45)

= 38870685 + 5670

√
292868607

127
sin

(
1

3
tan−1

(
9
√
292868607

466120

))

+
876128400√

127
cos

(
1

3
tan−1

(
9
√
292868607

466120

))
≈ 117089256.9368802.

Corollary 4.8. For every n ∈ N and every m ∈ {n, n + 1, · · · , 2n}, there exists
some c ∈ R such that #

(
τ2n(c)|(0,d)

)
= m.

Proof. By Theorem 4.5, as c increases from c ≪ 0 to c ≫ 0, #
(
τ2n(c)|(0,d)

)
takes

on the values

n+ 1, n+ 3, . . . , 2n− 2, 2n, 2n− 1, 2n− 3, . . . , n+ 2, n, if n is odd, (4.46)

and

n+ 1, n+ 3, . . . , 2n− 3, 2n− 1, 2n, 2n− 2, . . . , n+ 2, n, if n is even. (4.47)

In either case, #
(
τ2n(c)|(0,d)

)
takes on all integer values from n to 2n. □

In particular, Corollary 4.8 proves that every possible integer in the interval [n, 2n]
in (3.23) is attained for some c ∈ R.
Example 4.9. If n = 3, then q0 = 10395/64 and

h2(c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

18 435 4881/8 0 0

−1 −505/4 −12139/16 c− 10395/64 0

0 18 435 4881/8 0

0 −1 −505/4 −12139/16 c− 10395/64

0 0 18 435 4881/8

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −5832c2 + 207083520c+ 146313216000, c ∈ R. (4.48)

The roots of h2( · ) are 2240
(
214± 7

√
1009

)
/27. Therefore, by Theorem 4.5 one

finds

#
(
τ6(c)|(0,d)

)
=



3, if 2240
(
214 + 7

√
1009

)
/27 ≤ c;

5, if 10395/64 ≤ c < 2240
(
214 + 7

√
1009

)
/27;

6, if 2240
(
214− 7

√
1009

)
/27 < c < 10395/64;

4, if c ≤ 2240
(
214− 7

√
1009

)
/27.

(4.49)
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Appendix A. Some Conjectures

In this section, when dealing with polynomials, we will view them as elements in
a polynomial ring as in abstract algebra. We will review some standard notational
conventions and basic results. Let X be an indeterminate (formal symbol). We
denote by Z[X] (resp. Q[X]) the ring of polynomials in the indeterminate X with
coefficients in Z (resp. Q). A polynomial f(X) ∈ Q[X] is called irreducible, if it
has postive degree and it cannot be written as a product f(X) = g(X)h(X), where
g(X), h(X) ∈ Q[X] are polynomials of degree strictly less than the degree of f(X).

Conjecture A.1. For n ∈ N, n ≥ 2, the polynomial

gn−1(X) :=
(−1)⌊n/2⌋

(2n2)n
hn−1(X) (A.1)

is a monic irreducible polynomial in Q[X] of degree n − 1 with Galois group Sn−1.

In particular, for n ≥ 6, the constants c
(1)
n , c

(2)
n , . . . c

(⌈n/2⌉−1
n , c

(⌈n/2⌉+1)
n , . . . , c

(n)
n are

algebraic numbers that are not expressible in radicals over Q.

Proof for n = 5. We have

g4(X) = X4 − 5237598744576X3/5− 3477424021724410819117056X2/3125

+ 2933863158888223380395161288704X/125

+ 246639641224100448713004224731938816/55.

(A.2)

Let g̃4(X) := (3125)4 g4(X/3125). Then g̃4(X) is a monic polynomial of degree 4
with integer coefficients. Reducing the coefficient of modulo 19, one obtains

g̃4(X) ≡ X4 + 11X3 + 3X2 + 11X + 15 mod 19. (A.3)

It is easy to check that X4 + 11X3 + 3X2 + 11X + 15 is irreducible modulo 19. By
Gauss’ lemma, it follows that g4(X) is irreducible over Q. 2

Proof for n = 6. We have

g5(X) = X5 − 15354318108567042605X4/729

− 333441081709503846926848000000X3/3

+ 4983404391409567436628431599042560000000X2

+ 8770826733513986444066497798757941248000000000000X

− 2088913117666248881257824386993081779822264320000000000000

(A.4)

Let g̃5(X) := (729)5 g5(X/729). Then g̃5(X) is a monic polynomial of degree 5
with integer coefficients. Note that g5(X) is irreducible over Q if and only if g̃5(X)
is irreducible over Q. Furthermore, the Galois group of g5(X) is isomorphic to the
Galois group of g̃5(X). To prove the irreducibility and to compute the Galois group,
we reduce the coefficients of g̃5(X) modulo the primes 23 and 109:

g̃5(X) ≡ X5 + 5X4 + 11X3 + 7X2 + 13X + 16 mod 23, (A.5)
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g̃5(X) ≡ (X2 + 38X + 24)(X + 42)(X + 41)(x+ 11) mod 109. (A.6)

It is easy to check that X5+5X4+11X3+7X2+13X+16 is irreducible modulo 23.
Therefore, the polynomial g̃5(X) is irreducible over Z and also over Q by Gauss’
lemma. It also follows, by a theorem due to Dedekind (see [25, Thm. 4.37]), that
the Galois group of the polynomial g̃5(X) contains a 5-cycle. Since the reduction
of g̃5(X) modulo 109 is the product an irreducible quadratic polynomial and three
linear polynomials, Dedekind’s theorem implies that the Galois group of g̃5(X) con-
tains a transposition (2-cycle). A subgroup of S5 that contains a transposition and
a 5-cycle is S5. Since S5 is not a solvable group, Galois’ theorem then implies that
g5(X) is not solvable and hence c6 cannot be written in terms of radicals. 2

Proof for n = 7. The least common denominator of the coefficients of g6(X) turns
out to be 823543. Let g̃6(X) := (823543)6 g6(X/823543). Then p̃6(X) is a monic
polynomial with integer coefficients and factorizations of g̃6(X) modulo the primes
37, 43, and 89 are

g̃6(X) ≡ (X6 + 4X5 + 25X4 + 20X3 + 16X2 + 34X + 8) mod 37, (A.7)

g̃6(X) ≡ (X2 + 15X + 5)(X + 27)(X + 20)(X + 19)(X + 9) mod 43, (A.8)

g̃6(X) ≡ (X5 + 46X4 + 4X3 + 23X2 + 46X + 50)(X + 30) mod 89. (A.9)

The factorization g̃6(X) modulo 37 reveals that g̃6(X) is irreducible over Q. 2

The same idea can be used to prove the conjecture for larger n. The following
table shows what primes are used to verify the conjecture for 4 ≤ n ≤ 12.

n Smallest prime needed to prove existence of
(n− 1)-cycle (n− 2)-cycle 2-cycle

4 23 13 13
5 19 17 71
6 23 47 109
7 37 89 43
8 67 29 8089
9 179 47 7639
10 43 167 11519
11 59 41 2651743
12 53 67 19419221

Table 1.

We conclude with a vexing open conjecture:

Conjecture A.2. We have
(
recalling cn = c

(n)
n

)
cn ∼

n→∞

(
2n2
/
π
)2n

. (A.10)
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Sketch of the underlying idea. By (4.17), one infers that

[Re(βn(c))− (n− (1/2)) + i Im(βn(c))]
2n = eiπei(π/2)2n

[
c1/(2n)

]2n
, (A.11)

and hence,
Re(βn(c))− (n− (1/2)) = − sin(π/(2n))c1/(2n). (A.12)

Observing that Re(αn(cn)) ≈ Re(βn(cn)) for c ≫ 0, one arrives at

Re(αn(c)) ≈ (n− (1/2))− c1/(2n) sin(π/(2n)) for c ≫ 0. (A.13)

Finally, recalling that Re(αn(cn)) = −1/2, and assuming that cn increases suffi-
ciently rapidly with increasing n,

(cn)
1/(2n) sin(π/(2n)) ≈ n, for n ≫ 0. (A.14)

Therefore, we expect (see Table 2 below) that

cn ∼
n→∞

(
2n2
/
π
)2n

. (A.15)



34 FRITZ GESZTESY, MARKUS HUNZIKER, AND G. TESCHL

Table 2. Asymptotic behavior of cn and (2n2/π)2n

n cn (2n2/π)2n

1 3/4 0.40529
2 45 42.0495
3 36201.2 35378.2
4 1.17089× 108 1.15878× 108

5 1.04858× 1012 1.04280× 1012

6 2.10674× 1016 2.09987× 1016

7 8.27892× 1020 8.26165× 1020

8 5.77530× 1025 5.76715× 1025

9 6.65283× 1030 6.64619× 1030

10 1.19652× 1036 1.19565× 1036

11 3.21278× 1041 3.21100× 1041

12 1.24167× 1047 1.24115× 1047

13 6.70013× 1052 6.69788× 1052

14 4.91961× 1058 4.91828× 1058

15 4.80811× 1064 4.80706× 1064

16 6.13651× 1070 6.13540× 1070

17 1.00581× 1077 1.00566× 1077

18 2.08622× 1083 2.08595× 1083

19 5.40462× 1089 5.40404× 1089

20 1.72840× 1096 1.72824× 1096

21 6.75182× 10102 6.75128× 10102

22 3.19118× 10109 3.19096× 10109

23 1.80914× 10116 1.80903× 10116

24 1.22053× 10123 1.22046× 10123

25 9.72809× 10129 9.72763× 10129

26 9.09940× 10136 9.09902× 10136

27 9.92726× 10143 9.92689× 10143

28 1.25603× 10151 1.25599× 10151

29 1.83328× 10158 1.83322× 10158

30 3.07164× 10165 3.07155× 10165

31 5.88069× 10172 5.88055× 10172

32 1.28096× 10180 1.28093× 10180

33 3.16182× 10187 3.16175× 10187

34 8.81027× 10194 8.81010× 10194

35 2.76148× 10202 2.76143× 10202

36 9.70367× 10209 9.70351× 10209

37 3.81058× 10217 3.81052× 10217

38 1.66725× 10225 1.66723× 10225

39 8.10464× 10232 8.10454× 10232
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The following Table 3 seems to suggest that for every n ∈ N,

2n2
/
π <

(
c(n)n

)1/(2n)
< n/ sin(π/(2n)). (A.16)

n 2n2
/
π (cn)

1/2n n/ sin(π/(2n))

1 0.6366198 0.8660254 1.0000000
2 2.5464791 2.5900201 2.8284271
3 5.7295780 5.7515790 6.0000000
4 10.185916 10.199165 10.452504
5 15.915494 15.924294 16.180340
6 22.918312 22.924559 23.182220
7 31.194369 31.199023 31.457714
8 40.743665 40.747262 41.006647
9 51.566202 51.569062 51.828934
10 63.661977 63.664305 63.924532
11 77.030992 77.032923 77.293416
12 91.673247 91.674874 91.935571
13 107.58874 107.59013 107.85099
14 124.77748 124.77868 125.03966
15 143.23945 143.24050 143.50158
16 162.97466 162.97558 163.23676
17 183.98311 183.98393 184.24517
18 206.26481 206.26554 206.52684
19 229.81974 229.82039 230.08175
20 254.64791 254.64850 254.90990
21 280.74932 280.74986 281.01129
22 308.12397 308.12446 308.38593
23 336.77186 336.77231 337.03380
24 366.69299 366.69340 366.95492
25 397.88736 397.88774 398.14928

Table 3.

Acknowledgments. We are indebted to Mark Ashbaugh, Andrei Martinez-Finkel-
shtein, Alexander Sakhnovich, Rudi Weikard, and Maxim Zinchenko for very inter-
esting discussions on this subject.
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